安徽省泗縣劉圩高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
安徽省泗縣劉圩高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
安徽省泗縣劉圩高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
安徽省泗縣劉圩高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
安徽省泗縣劉圩高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省泗縣劉圩高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),命題“若,則或”的否命題是()A.若,則或B.若,則或C.若,則且D.若,則且2.已知函數(shù)為偶函數(shù),則在處的切線方程為()A. B.C. D.3.幾何學(xué)史上有一個(gè)著名的米勒問(wèn)題:“設(shè)點(diǎn)、是銳角的一邊上的兩點(diǎn),試在邊上找一點(diǎn),使得最大的.”如圖,其結(jié)論是:點(diǎn)為過(guò)、兩點(diǎn)且和射線相切的圓的切點(diǎn).根據(jù)以上結(jié)論解決一下問(wèn)題:在平面直角坐標(biāo)系中,給定兩點(diǎn),,點(diǎn)在軸上移動(dòng),當(dāng)取最大值時(shí),點(diǎn)的橫坐標(biāo)是()A.B.C.或D.或4.已知為偶函數(shù),且當(dāng)時(shí),,其中為的導(dǎo)數(shù),則不等式的解集為()A. B.C. D.5.已知命題,,則()A., B.,C., D.,6.已知,則的最小值是()A.3 B.8C.12 D.207.拋物線的焦點(diǎn)到直線的距離為,則()A.1 B.2C. D.48.設(shè)是等差數(shù)列的前n項(xiàng)和,若,,則()A.26 B.-7C.-10 D.-139.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離10.在如圖所示的莖葉圖中,若甲組數(shù)據(jù)的眾數(shù)為16,則乙組數(shù)據(jù)的平均數(shù)為()A.12 B.10C.8 D.611.命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則12.若將一個(gè)橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),這樣的橢圓稱為“對(duì)偶橢圓”,下列橢圓中是“對(duì)偶橢圓”的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為_(kāi)_________________14.已知、是空間內(nèi)兩個(gè)單位向量,且,如果空間向量滿足,且,,則對(duì)于任意的實(shí)數(shù)、,的最小值為_(kāi)_____15.已知定點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),則,兩點(diǎn)的最短距離為_(kāi)_______16.設(shè)是同一個(gè)半徑為4的球的球面上四點(diǎn),為等邊三角形且其面積為,則三棱錐體積的最大值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(3)已知數(shù)列,設(shè),求數(shù)列的前項(xiàng)和.18.(12分)證明:是無(wú)理數(shù).(我們知道任意一個(gè)有理數(shù)都可以寫(xiě)成形如(m,n互質(zhì),)的形式)19.(12分)在二項(xiàng)式的展開(kāi)式中;(1)若,求常數(shù)項(xiàng);(2)若第4項(xiàng)的系數(shù)與第7項(xiàng)的系數(shù)比為,求:①二項(xiàng)展開(kāi)式中的各項(xiàng)的二項(xiàng)式系數(shù)之和;②二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù)之和20.(12分)已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且與x軸垂直的直線交該拋物線于A,B兩點(diǎn),|AB|=4(1)求拋物線的方程;(2)過(guò)點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點(diǎn))21.(12分)已知函數(shù).(1)當(dāng)時(shí),證明:存在唯一的零點(diǎn);(2)若,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數(shù)的極值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)否命題的定義直接可得.【詳解】根據(jù)否命題的定義可得命題“若,則或”的否命題是若,則且,故選:C.2、A【解析】根據(jù)函數(shù)是偶函數(shù)可得,可求出,求出函數(shù)在處的導(dǎo)數(shù)值即為切線斜率,即可求出切線方程.【詳解】函數(shù)為偶函數(shù),,即,解得,,則,,且,切線方程為,整理得.故選:A.【點(diǎn)睛】本題考查函數(shù)奇偶性的應(yīng)用,考查利用導(dǎo)數(shù)求切線方程,屬于基礎(chǔ)題.3、A【解析】根據(jù)米勒問(wèn)題的結(jié)論,點(diǎn)應(yīng)該為過(guò)點(diǎn)、的圓與軸的切點(diǎn),設(shè)圓心的坐標(biāo)為,寫(xiě)出圓的方程,并將點(diǎn)、的坐標(biāo)代入可求出點(diǎn)的橫坐標(biāo).【詳解】解:設(shè)圓心的坐標(biāo)為,則圓的方程為,將點(diǎn)、的坐標(biāo)代入圓的方程得,解得或(舍去),因此,點(diǎn)的橫坐標(biāo)為,故選:A.4、A【解析】根據(jù)已知不等式和要求解的不等式特征,構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為解不等式.通過(guò)已知條件研究g(x)的奇偶性和單調(diào)性即可解該不等式.【詳解】令,則根據(jù)題意可知,,∴g(x)是奇函數(shù),∵,∴當(dāng)時(shí),,單調(diào)遞減,∵g(x)是奇函數(shù),g(0)=0,∴g(x)在R上單調(diào)遞減,由不等式得,.故選:A.5、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.6、A【解析】利用基本不等式進(jìn)行求解即可.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)取等號(hào),即當(dāng)時(shí)取等號(hào),故選:A7、B【解析】首先確定拋物線的焦點(diǎn)坐標(biāo),然后結(jié)合點(diǎn)到直線距離公式可得的值.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,其到直線的距離:,解得:(舍去).故選:B.8、C【解析】直接利用等差數(shù)列通項(xiàng)和求和公式計(jì)算得到答案.【詳解】,,解得,故.故選:C.9、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A10、A【解析】根據(jù)眾數(shù)的概念,求得的值,再根據(jù)平均數(shù)的計(jì)算公式,即可求解.【詳解】由題意,甲組數(shù)據(jù)的眾數(shù)為16,得,所以乙組數(shù)據(jù)的平均數(shù)為故選:A.11、C【解析】根據(jù)逆否命題的定義寫(xiě)出逆否命題即得【詳解】解:以否定的結(jié)論作條件、否定的條件作結(jié)論得出的命題為原命題的逆否命題,即“若,則”的逆否命題是“若,則”故選:C12、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進(jìn)而判斷所給命題的真假【詳解】解:因?yàn)闄E圓短的軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:二、填空題:本題共4小題,每小題5分,共20分。13、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.14、【解析】根據(jù)已知可設(shè),,,根據(jù)已知條件求出、、的值,將向量用坐標(biāo)加以表示,利用空間向量的模長(zhǎng)公式可求得的最小值.【詳解】因?yàn)?、是空間內(nèi)兩個(gè)單位向量,且,所以,,因?yàn)椋瑒t,不妨設(shè),,設(shè),則,,解得,則,因?yàn)?,可得,則,所以,,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,對(duì)于任意的實(shí)數(shù)、,的最小值為.故答案為:.15、【解析】線段最短,就是說(shuō)的距離最小,此時(shí)直線和直線垂直,可先求的斜率,再求直線的方程,然后與直線聯(lián)立求交點(diǎn)即可【詳解】定點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),當(dāng)線段最短時(shí),就是直線和直線垂直,的方程為:,它與聯(lián)立解得,所以的坐標(biāo)是,所以,故答案為:16、【解析】求出等邊的邊長(zhǎng),畫(huà)出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點(diǎn)M為的重心,E為AC中點(diǎn),當(dāng)點(diǎn)在平面上的射影為時(shí),三棱錐的體積最大,此時(shí),,點(diǎn)M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點(diǎn)睛】思路點(diǎn)睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學(xué)生的空間想象能力與數(shù)形結(jié)合思想,及運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項(xiàng)、公比即可得解;(2)化簡(jiǎn)后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯(cuò)位相減法求出數(shù)列的和.【小問(wèn)1詳解】設(shè)公比為,由條件可知,,所以;【小問(wèn)2詳解】,又,所以,所以數(shù)列是以為首項(xiàng),為公差等差數(shù)列,所以,所以.【小問(wèn)3詳解】,,兩式相減可得,,.18、詳見(jiàn)解析【解析】利用反證法,即可推得矛盾.【詳解】假設(shè)有理數(shù),則,則,為整數(shù),的尾數(shù)只能是0,1,4,5,6,9,的尾數(shù)只能是0,1,4,5,6,9,則的尾數(shù)是0,2,8,由得,尾數(shù)為0,則的尾數(shù)是0,而的尾數(shù)為0或5,這與為最簡(jiǎn)分?jǐn)?shù),的最大公約數(shù)是1,相矛盾,所以假設(shè)不正確,是無(wú)理數(shù).19、(1)60(2)①1024;②1【解析】(1)根據(jù)二項(xiàng)式定理求解(2)根據(jù)二項(xiàng)式定理與條件求解,二項(xiàng)式系數(shù)之和為,系數(shù)和可賦值【小問(wèn)1詳解】若,則,(,…,9)令∴∴常數(shù)項(xiàng)為.【小問(wèn)2詳解】,(,…,),解得①②令,得系數(shù)和為20、(1);(2).【解析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質(zhì)可得,從而可得結(jié)果;(2)設(shè)直線的方程為,代入,得,利用弦長(zhǎng)公式,結(jié)合韋達(dá)定理可得的值,由點(diǎn)到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結(jié)果.【詳解】(1)由拋物線的定義得到準(zhǔn)線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設(shè)直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因?yàn)橹本€l與拋物線有兩個(gè)交點(diǎn),所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點(diǎn)O到直線l的距離,所以,解得,即【點(diǎn)睛】本題主要考查直線與拋物線的位置關(guān)系的相關(guān)問(wèn)題,意在考查綜合利用所學(xué)知識(shí)解決問(wèn)題能力和較強(qiáng)的運(yùn)算求解能力,其常規(guī)思路是先把直線方程與圓錐曲線方程聯(lián)立,消元、化簡(jiǎn),然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問(wèn)題21、(1)證明見(jiàn)解析;(2)【解析】(1)當(dāng)時(shí),求導(dǎo)得到,判斷出函數(shù)的單調(diào)性,求出最值,可證得命題成立;(2)當(dāng)且時(shí),不滿足題意,故,又定義域?yàn)?,講不等式化簡(jiǎn),參變分離后構(gòu)造新函數(shù),求導(dǎo)判斷單調(diào)性并求出最值,可得實(shí)數(shù)的取值范圍【詳解】(1)函數(shù)的定義域?yàn)椋?dāng)時(shí),由,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;.且,故存在唯一的零點(diǎn);(2)當(dāng)時(shí),不滿足恒成立,故由定義域?yàn)?,可得,令,則,則當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得最大值(1),故實(shí)數(shù)的取值范圍是【點(diǎn)睛】方法點(diǎn)睛:本題考查函數(shù)零點(diǎn)的問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,考查不等式的恒成立問(wèn)題,關(guān)于恒成立問(wèn)題的幾種常見(jiàn)解法總結(jié)如下:

參變分離法,將不等式恒成立問(wèn)題轉(zhuǎn)化函數(shù)求最值問(wèn)題;

主元變換法,把已知取值范圍的變量作為主元,把求取值范圍的變量看作參數(shù);

分類討論,利用函數(shù)的性質(zhì)討論參數(shù),分別判斷單調(diào)性求出最值;

數(shù)形結(jié)合法,將不等式兩端的式子分別看成兩個(gè)函

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論