版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省惠州市惠東高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若橢圓的短軸為,一個焦點(diǎn)為,且為等邊三角形的橢圓的離心率是A. B.C. D.2.已知雙曲線的離心率,點(diǎn)是拋物線上的一動點(diǎn),到雙曲線的上焦點(diǎn)的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.3.已知直線,,若,則實(shí)數(shù)的值是()A.0 B.2或-1C.0或-3 D.-34.等比數(shù)列的公比為,則“”是“對于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.雙曲線的左、右焦點(diǎn)分別為、,P為雙曲線C的右支上一點(diǎn).以O(shè)為圓心a為半徑的圓與相切于點(diǎn)M,且,則該雙曲線的漸近線為()A. B.C. D.6.函數(shù)在上的最小值為()A. B.C.-1 D.7.是雙曲線:上一點(diǎn),已知,則的值()A. B.C.或 D.8.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.9.用數(shù)學(xué)歸納法證明“”的過程中,從到時,不等式的左邊增加了()A. B.C. D.10.等差數(shù)列的通項(xiàng)公式,數(shù)列,其前項(xiàng)和為,則等于()A. B.C. D.11.的展開式中的系數(shù)是()A. B.C. D.12.如圖,過拋物線的焦點(diǎn)的直線交拋物線于點(diǎn),,交其準(zhǔn)線于點(diǎn),準(zhǔn)線與對稱軸交于點(diǎn),若,且,則此拋物線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知水平放置的是按“斜二測畫法”得到如下圖所示的直觀圖,其中,,則原的面積為______.14.已知正數(shù),滿足.若恒成立,則實(shí)數(shù)的取值范圍是______.15.如圖,用四種不同的顏色分別給A,B,C,D四個區(qū)域涂色,相鄰區(qū)域必須涂不同顏色,若允許同一種顏色多次使用,則不同的涂色方法的種數(shù)為______(用數(shù)字作答)16.已知等差數(shù)列的公差不為零,若,,成等比數(shù)列,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的標(biāo)準(zhǔn)方程為:,若右焦點(diǎn)為且離心率為(1)求橢圓的方程;(2)設(shè),是上的兩點(diǎn),直線與曲線相切且,,三點(diǎn)共線,求線段的長18.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(diǎn)(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍19.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(diǎn)(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點(diǎn)M,N,與直線交于點(diǎn)Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值20.(12分)已知圓C過點(diǎn),,它與x軸的交點(diǎn)為,,與y軸的交點(diǎn)為,,且.(1)求圓C的標(biāo)準(zhǔn)方程;(2)若,直線,從點(diǎn)A發(fā)出的一條光線經(jīng)直線l反射后與圓C有交點(diǎn),求反射光線所在的直線的斜率的取值范圍.21.(12分)已知等差數(shù)列中,(1)分別求數(shù)列的通項(xiàng)公式和前項(xiàng)和;(2)設(shè),求22.(10分)在中,角、、所對的邊分別為、、,且(1)求證;、、成等差數(shù)列;(2)若,的面積為,求的周長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】因?yàn)闉榈冗吶切?所以.考點(diǎn):橢圓的幾何性質(zhì).點(diǎn)評:橢圓圖形當(dāng)中有一個特征三角形,它的三邊分別為a,b,c.因而可據(jù)此求出離心率.2、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點(diǎn)),解得,即得結(jié)果.【詳解】因?yàn)殡p曲線的離心率,所以,設(shè)為拋物線焦點(diǎn),則,拋物線準(zhǔn)線方程為,因此到雙曲線的上焦點(diǎn)的距離與到直線的距離之和等于,因?yàn)?,所以,即,即雙曲線的方程為,選B.【點(diǎn)睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.3、C【解析】由,結(jié)合兩直線一般式有列方程求解即可.【詳解】由知:,解得:或故選:C.4、D【解析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D5、A【解析】連接、,利用中位線定理和雙曲線定義構(gòu)建參數(shù)關(guān)系,即求得漸近線方程.【詳解】如圖,連接、,∵M(jìn)是的中點(diǎn),∴是的中位線,∴,且,根據(jù)雙曲線的定義,得,∴,∵與以原點(diǎn)為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用和漸近線的求法,屬于中檔題.6、D【解析】求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因?yàn)?,所以,?dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,故.故選:D.7、B【解析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點(diǎn)到焦點(diǎn)的距離的取值范圍,即可求解.【詳解】雙曲線方程為:,是雙曲線:上一點(diǎn),,,或,又,.故選:B8、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點(diǎn),從而求出函數(shù)的極大值;【詳解】解:因?yàn)?,所以,依題意可得,即,解得,所以定義域?yàn)?,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B9、B【解析】依題意,由遞推到時,不等式左邊為,與時不等式的左邊作差比較即可得到答案【詳解】用數(shù)學(xué)歸納法證明等式的過程中,假設(shè)時不等式成立,左邊,則當(dāng)時,左邊,∴從到時,不等式的左邊增加了故選:B10、D【解析】根據(jù)裂項(xiàng)求和法求得,再計(jì)算即可.【詳解】解:由題意得====所以.故選:D11、B【解析】根據(jù)二項(xiàng)式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B12、B【解析】根據(jù)拋物線定義,結(jié)合三角形相似以及已知條件,求得,則問題得解.【詳解】根據(jù)題意,過作垂直于準(zhǔn)線,垂足為,過作垂直于準(zhǔn)線,垂足為,如下所示:因?yàn)?,?/,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直觀圖畫出原圖,再根據(jù)三角形面積公式計(jì)算可得.【詳解】解:依題意得到直觀圖的原圖如下:且,所以故答案為:【點(diǎn)睛】本題考查斜二測畫法中原圖和直觀圖面積之間的關(guān)系,屬于基礎(chǔ)題14、【解析】利用基本不等式性質(zhì)可得的最小值,由恒成立可得即可求出實(shí)數(shù)的取值范圍.【詳解】解:因?yàn)檎龜?shù),滿足,所以,當(dāng)且僅當(dāng)時,即時取等號因?yàn)楹愠闪?,所以,解?故實(shí)數(shù)的取值范圍是.故答案填:.【點(diǎn)睛】熟練掌握基本不等式的性質(zhì)和正確轉(zhuǎn)化恒成立問題是解題的關(guān)鍵.15、48【解析】由已知按區(qū)域分四步,然后給,,,區(qū)域分步選擇顏色,由此即可求解【詳解】解:由已知按區(qū)域分四步:第一步區(qū)域有4種選擇,第二步區(qū)域有3種選擇,第三步區(qū)域有2種選擇,第四步區(qū)域也有2種選擇,則由分步計(jì)數(shù)原理可得共有種,故答案為:4816、0【解析】設(shè)等差數(shù)列的公差為,,根據(jù),,成等比數(shù)列,得到,再根據(jù)等差數(shù)列的通項(xiàng)公式可得結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,,因?yàn)?,,成等比?shù)列,所以,所以,整理得,因?yàn)椋?,所?故答案為:0.【點(diǎn)睛】本題考查了等比中項(xiàng),考查了等差數(shù)列通項(xiàng)公式基本量運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)橢圓的焦點(diǎn)、離心率求橢圓參數(shù),寫出橢圓方程即可.(2)由(1)知曲線為,討論直線的存在性,設(shè)直線方程聯(lián)立橢圓方程并應(yīng)用韋達(dá)定理求弦長即可.【詳解】(1)由題意,橢圓半焦距且,則,又,∴橢圓方程為;(2)由(1)得,曲線為當(dāng)直線的斜率不存在時,直線,不合題意:當(dāng)直線的斜率存在時,設(shè),又,,三點(diǎn)共線,可設(shè)直線,即,由直線與曲線相切可得,解得,聯(lián)立,得,則,,∴.18、(1)證明見解析;(2).【解析】(1)取的中點(diǎn)F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點(diǎn)G,H,連接,證明為直線與平面所成的角,設(shè)正方形的邊長為1,,在中,,即得解.【小問1詳解】解:取的中點(diǎn)F,連接因?yàn)?,則為正三角形,所以因?yàn)槠矫嫫矫?,則平面因?yàn)槠矫?,則.①因?yàn)樗倪呅螢檎叫?,E為的中點(diǎn),則,所以,從而,所以.②又平面,結(jié)合①②知,平面,所以【小問2詳解】解:分別取的中點(diǎn)G,H,則,又,,則,所以四邊形為平行四邊形,從而.因?yàn)?,則因?yàn)槠矫嫫矫?,,則平面,從而,因?yàn)槠矫妫云矫妫瑥亩矫孢B接,則為直線與平面所成的角.設(shè)正方形的邊長為1,,則從而,.在中,因?yàn)楫?dāng)時,單調(diào)遞增,則,所以直線與平面所成角的余弦值的取值范圍是.19、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經(jīng)過的點(diǎn)建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出直線的斜率,結(jié)合可得,再逐個求解,,然后可證結(jié)論.【小問1詳解】解:由題意,解得故橢圓C的方程為.【小問2詳解】證明:設(shè)直線的方程為,聯(lián)立得,因?yàn)橹本€與橢圓C相切,所以判別式,即,整理得,所以,故直線的方程為,因?yàn)椋?,設(shè)直線的方程為,聯(lián)立方程組解得故點(diǎn)Q坐標(biāo)為,聯(lián)立方程組,化簡得設(shè)點(diǎn)因?yàn)榕袆e式,得又,所以故,于是為定值.【點(diǎn)睛】直線與橢圓的相切問題一般是聯(lián)立方程,結(jié)合判別式為零求解;定值問題的求解一般結(jié)合目標(biāo)式中的項(xiàng),逐個求解,代入驗(yàn)證即可.20、(1);(2).【解析】(1)設(shè)圓C的一般式方程為:,然后根據(jù)題意列出方程,解出D,E,F(xiàn)的值即可得到圓的方程;(2)先求出點(diǎn)關(guān)于直線l的對稱點(diǎn),設(shè)反射光線所在直線方程為,利用直線和圓的位置關(guān)系列出不等式解出k的取值范圍即可.【詳解】(1)設(shè)圓C的一般式方程為:,令,得,所以,令,得,所以,所以有,所以,①又圓C過點(diǎn),,所以有,②,③由①②③得,,,所以圓C的一般式方程為,標(biāo)準(zhǔn)方程為;(2)設(shè)關(guān)于的對稱點(diǎn),所以有,解之得,故點(diǎn),∴反射光線所在直線過點(diǎn),設(shè)反射光線所在直線方程為:,所以有,所以反射光線所在的直線斜率取值范圍為.【點(diǎn)睛】本題考查圓的方程的求法,直線和圓的位置關(guān)系的應(yīng)用,考查邏輯思維能力和運(yùn)算求解能力,屬于??碱}.21、(1),(2)【解析】(1)利用可以求出公差,即可求出數(shù)列的通項(xiàng)公式;(2)通過(1)判斷符號,進(jìn)而分和兩種情況討論求解即可.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度汽車銷售公司車輛產(chǎn)權(quán)轉(zhuǎn)讓合同3篇
- 二零二五年洗碗工勞動合同與職業(yè)健康檢查協(xié)議2篇
- 2025年度城市綠化帶更新改造樹苗采購合同4篇
- 二零二五年貨車駕駛員駕駛資格審核及培訓(xùn)合同3篇
- 2025年度二零二五年度綠色建筑節(jié)能改造工程環(huán)保驗(yàn)收合同3篇
- 2025年度鋁合金屋頂瓦片供應(yīng)合同4篇
- 二零二五年度屋頂綠化植物租賃與養(yǎng)護(hù)服務(wù)合同4篇
- 2025年度舞臺劇臨時演員聘用及表演服務(wù)合同3篇
- 2025年度淋浴房產(chǎn)品銷售與安裝服務(wù)合同4篇
- 2025年水塘承包水資源開發(fā)利用與保護(hù)合同3篇
- 2024年關(guān)愛留守兒童工作總結(jié)
- GB/T 45092-2024電解水制氫用電極性能測試與評價(jià)
- 《算術(shù)平方根》課件
- DB32T 4880-2024民用建筑碳排放計(jì)算標(biāo)準(zhǔn)
- 2024-2024年上海市高考英語試題及答案
- 注射泵管理規(guī)范及工作原理
- 山東省濟(jì)南市2023-2024學(xué)年高二上學(xué)期期末考試化學(xué)試題 附答案
- 大唐電廠采購合同范例
- 國潮風(fēng)中國風(fēng)2025蛇年大吉蛇年模板
- GB/T 18724-2024印刷技術(shù)印刷品與印刷油墨耐各種試劑性的測定
- IEC 62368-1標(biāo)準(zhǔn)解讀-中文
評論
0/150
提交評論