




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆全國大聯(lián)考高二數(shù)學第一學期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在某次海軍演習中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護衛(wèi)艦的距離為()A.海里 B.海里C.海里 D.海里2.如圖,樣本和分別取自兩個不同的總體,它們的平均數(shù)分別為和,標準差分別為和,則()AB.C.D.3.拋物線準線方程為()A. B.C. D.4.已知m,n表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.若隨機事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨立C.互為對立 D.互斥且獨立6.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.7.命題“若,則”為真命題,那么不可能是()A. B.C. D.8.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.9.在如圖所示的棱長為1的正方體中,點P在側(cè)面所在的平面上運動,則下列四個命題中真命題的個數(shù)是()①若點P總滿足,則動點P的軌跡是一條直線②若點P到點A的距離為,則動點P的軌跡是一個周長為的圓③若點P到直線AB的距離與到點C的距離之和為1,則動點P的軌跡是橢圓④若點P到平面的距離與到直線CD的距離相等,則動點P的軌跡是拋物線A.1 B.2C.3 D.410.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.11.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.12.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點F為,過點F的直線交該拋物線的準線于點A,與該拋物線的一個交點為B,且,則______14.已知點,為拋物線:上不同于原點的兩點,且,則的面積的最小值為__________.15.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________16.某教師組織本班學生開展課外實地測量活動,如圖是要測山高.現(xiàn)選擇點A和另一座山頂點C作為測量觀測點,從A測得點M的仰角,點C的仰角,測得,,已知另一座山高米,則山高_______米.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動點到點的距離與點到直線的距離相等.(1)求動點的軌跡方程;(2)若過點且斜率為的直線與動點的軌跡交于、兩點,求三角形AOB的面積.18.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點到平面的距離.19.(12分)已知集合,(1)若,求m的取值范圍;(2)若“x∈B”是“x∈A”的充分不必要條件,求m的取值范圍20.(12分)已知曲線上任意一點滿足方程,(1)求曲線的方程;(2)若直線與曲線在軸左、右兩側(cè)的交點分別是,且,求的最小值.21.(12分)已知拋物線C:上一點與焦點F的距離為(1)求和p的值;(2)直線l:與C相交于A,B兩點,求直線AM,BM的斜率之積22.(10分)已知在等差數(shù)列中,,(1)求的通項公式;(2)若,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用正弦定理可求解.【詳解】設(shè)甲驅(qū)逐艦、乙護衛(wèi)艦、航母所在位置分別為A,B,C,則,,.在△ABC中,由正弦定理得,即,解得,即甲驅(qū)逐艦與乙護衛(wèi)艦的距離為海里故選:A2、B【解析】直接根據(jù)圖表得到答案.【詳解】根據(jù)圖表:樣本數(shù)據(jù)均小于等于10,樣本數(shù)據(jù)均大于等于10,故;樣本數(shù)據(jù)波動大于樣本數(shù)據(jù),故.故選:B.3、D【解析】由拋物線的準線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準線方程為故選D【點睛】本題主要考查了拋物線的準線方程,屬于基礎(chǔ)題4、D【解析】根據(jù)空間直線與平面間的位置關(guān)系判斷【詳解】若,,也可以有,A錯;若,,也可以有,B錯;若,,則或,C錯;若,,則,這是線面垂直的判定定理之一,D正確故選:D5、B【解析】利用獨立事件,互斥事件和對立事件的定義判斷即可【詳解】解:因為,,又因為,所以有,所以事件與相互獨立,不互斥也不對立故選:B.6、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗滿足題意故選:C7、D【解析】根據(jù)命題真假的判斷,對四個選項一一驗證即可.【詳解】對于A:若,則必成立;對于B:若,則必成立;對于C:若,則必成立;對于D:由不能得出,所以不可能是.故選:D8、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷9、C【解析】根據(jù)線面關(guān)系、距離關(guān)系可分別對每一個命題判斷.【詳解】若點P總滿足,又,,,可得對角面,因此點P的軌跡是直線,故①正確若點P到點A的距離為,則動點P的軌跡是以點B為圓心,以1為半徑的圓(在平面內(nèi)),因此圓的周長為,故②正確點P到直線AB的距離PB與到點C的距離PC之和為1,又,則動點P的軌跡是線段BC,因此③不正確點P到平面的距離(即到直線的距離)與到直線CD的距離(即到點C的距離)相等,則動點P的軌跡是以線段BC的中點為頂點,直線BC為對稱軸的拋物線(在平面內(nèi)),因此④正確故有①②④三個故選:C10、B【解析】直接利用直線垂直公式計算得到答案.【詳解】因為l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點睛】本題考查了根據(jù)直線垂直計算參數(shù),屬于簡單題.11、A【解析】設(shè)雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關(guān)于、的等式,即可求得雙曲線的離心率.【詳解】設(shè)雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.12、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設(shè)與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作垂直于準線,垂足為,準線與軸交于點,根據(jù)已知條件,利用幾何方法,結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點坐標,準線方程,作垂直于準線于,準線與軸交于點,則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.14、【解析】設(shè),,利用可得即可求得,利用兩點間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當且僅當時等號成立,所以的面積的最小值為,故答案為:.【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵點是設(shè),坐標,采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.15、3【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項和公式能求出結(jié)果詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7==381,解得a1=3.故答案為3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力.16、【解析】利用正弦定理可求出各個三角形的邊長,進而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】小問1:由拋物線的定義可求得動點的軌跡方程;小問2:可知直線的方程為,設(shè)點、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問1詳解】由題意點的軌跡是以為焦點,直線為準線的拋物線,所以,則,所以動點的軌跡方程是.【小問2詳解】由已知直線的方程是,設(shè)、,由得,,所以,則,故,18、(1)證明見解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進行求解即可.【小問1詳解】證明:設(shè),因為是等邊三角形,且,所以是的中點,則.又,所以,所以,即.又平面平面,所以.又,所以平面.因為平面,所以平面平面.【小問2詳解】解:因為,所以.在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點到平面的距離為,因為,所以,解得,即點到平面的距離為.19、(1)(2)【解析】(1)先求出,由得到,得到不等式組,求出m的取值范圍;(2)根據(jù)充分不必要條件得到是的真子集,分與兩種情況進行求解,求得m的取值范圍.【小問1詳解】,解得:,故,因為,所以,故,解得:,所以m的取值范圍是.【小問2詳解】若“x∈B”是“x∈A”的充分不必要條件,則是的真子集,當時,,解得:,當時,需要滿足:或,解得:綜上:m取值范圍是20、(1)(2)8【解析】(1)根據(jù)雙曲線的定義即可得出答案;(2)可設(shè)直線的方程為,則直線的方程為,由,求得,同理求得,從而可求得的值,再結(jié)合基本不等式即可得出答案.【小問1詳解】解:設(shè),則,等價于,曲線為以為焦點的雙曲線,且實軸長為2,焦距為,故曲線的方程為:;【小問2詳解】解:由題意可得直線的斜率存在且不為0,可設(shè)直線的方程為,則直線的方程為,由,得,所以,同理可得,,所以,,當且僅當時取等號,所以當時,取得最小值8.21、(1)(2)【解析】(1)結(jié)合拋物線的定義以及點坐標求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省濟南市萊蕪區(qū)市級名校2024-2025學年初三年級第一次質(zhì)量檢測試題物理試題含解析
- 二手房屋交易定金合同范本
- 濟寧市金鄉(xiāng)縣2025年數(shù)學四年級第二學期期末預(yù)測試題含解析
- 應(yīng)收賬款質(zhì)押合同
- 特許經(jīng)營合同與市場監(jiān)管
- 2025年海南省保亭黎族苗族自治縣中考三模道德與法治試題(含答案)
- 健身房轉(zhuǎn)讓協(xié)議
- 幼兒舞蹈表演形式
- 影視后期特效項目教程課件 項目1 不忘初心青春無悔
- 第三章第三節(jié)海陸變遷 教學設(shè)計-2024-2025學年湘教版七年級地理上冊
- 初級出版專業(yè)技術(shù)人員職業(yè)資格真題答案解析2024
- 遼寧省部分示范性高中2025屆高三下學期4月模擬聯(lián)合調(diào)研數(shù)學試題(無答案)
- 二零二五協(xié)警聘用合同范文
- CT引導下經(jīng)皮胃造瘺術(shù)專家共識(2025版)解讀課件
- 防雷安全知識培訓課件
- 醫(yī)療設(shè)備租賃服務(wù)及安全措施
- 2024年美容師考試相關(guān)法律法規(guī)解讀試題及答案
- 2024年山東司法警官職業(yè)學院招聘考試真題
- 產(chǎn)房護理人文關(guān)懷課件
- 環(huán)境保護部華南環(huán)境科學研究所(廣州)2025年上半年招考人員易考易錯模擬試題(共500題)試卷后附參考答案
- 酒店前臺餐廳收銀流程
評論
0/150
提交評論