




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省閬中中學(xué)新區(qū)2025屆高二上數(shù)學(xué)期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的光學(xué)性質(zhì)如下:如圖1,從雙曲線右焦點發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學(xué)性質(zhì).某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點,若從右焦點發(fā)出的光線經(jīng)雙曲線上的點A和點B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.2.已知點B是A(3,4,5)在坐標(biāo)平面xOy內(nèi)的射影,則||=()A. B.C.5 D.53.2020年12月4日,嫦娥五號探測器在月球表面第一次動態(tài)展示國旗.1949年公布的《國旗制法說明》中就五星的位置規(guī)定:大五角星有一個角尖正向上方,四顆小五角星均各有一個角尖正對大五角星的中心點.有人發(fā)現(xiàn),第三顆小星的姿態(tài)與大星相近.為便于研究,如圖,以大星的中心點為原點,建立直角坐標(biāo)系,,,,分別是大星中心點與四顆小星中心點的聯(lián)結(jié)線,,則第三顆小星的一條邊AB所在直線的傾斜角約為()A. B.C. D.4.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.5.設(shè)雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A B.2C. D.6.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點 D.2為函數(shù)的極大值點7.設(shè)是等差數(shù)列的前項和,已知,,則等于()A. B.C. D.8.函數(shù)的大致圖象是()A. B.C. D.9.已知命題,命題,,則下列命題中為真命題的是A. B.C. D.10.某企業(yè)甲車間有200人,乙車間有300人,現(xiàn)用分層抽樣的方法在這兩個車間中抽取25人進(jìn)行技能考核,則從甲車間抽取的人數(shù)應(yīng)為()A.5 B.10C.8 D.911.函數(shù)的遞增區(qū)間是()A. B.和C. D.和12.設(shè)是橢圓的上頂點,若上的任意一點都滿足,則的離心率的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列中,,則=_________.14.已知直線與直線平行,則實數(shù)______15.若,,,四點中恰有三點在橢圓上,則橢圓C的方程為________.16.若,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處取得極值7(1)求的值;(2)求函數(shù)在區(qū)間上的最大值18.(12分)已知圓C的方程為.(1)直線l1過點P(3,1),傾斜角為45°,且與圓C交于A,B兩點,求AB的長;(2)求過點P(3,1)且與圓C相切的直線l2的方程.19.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.20.(12分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.21.(12分)已知橢圓的左、右焦點分別為、,離心率,且過點(1)求橢圓C的方程;(2)已知過的直線l交橢圓C于A、B兩點,試探究在平面內(nèi)是否存在定點Q,使得是一個確定的常數(shù)?若存在,求出點Q的坐標(biāo);若不存在,說明理由22.(10分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè),根據(jù)題意可得,由雙曲線定義得、,進(jìn)而求出(用表示),然后在中,應(yīng)用勾股定理得出關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),則.因為,所以,則,則,又因為,所以,則,在中,,即,所以.故選:D2、C【解析】先求出B(3,4,0),由此能求出||【詳解】解:∵點B是點A(3,4,5)在坐標(biāo)平面Oxy內(nèi)的射影,∴B(3,4,0),則||==5故選:C3、C【解析】由五角星的內(nèi)角為,可知,又平分第三顆小星的一個角,過作軸平行線,則,即可求出直線的傾斜角.【詳解】都為五角星的中心點,平分第三顆小星的一個角,又五角星的內(nèi)角為,可知,過作軸平行線,則,所以直線的傾斜角為,故選:C【點睛】關(guān)鍵點點睛:本題考查直線傾斜角,解題的關(guān)鍵是通過做輔助線找到直線的傾斜角,通過幾何關(guān)系求出傾斜角,考查學(xué)生的數(shù)形結(jié)合思想,屬于基礎(chǔ)題.4、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.5、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點在y軸上,設(shè)的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.6、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點,故C不正確,D正確.故選:D7、C【解析】依題意有,解得,所以.考點:等差數(shù)列的基本概念.【易錯點晴】本題主要考查等差數(shù)列的基本概念.在解有關(guān)等差數(shù)列的問題時可以考慮化歸為和等基本量,通過建立方程(組)獲得解.即等差數(shù)列的通項公式及前項和公式,共涉及五個量,知其中三個就能求另外兩個,即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問題,注意要弄準(zhǔn)它們的值.運用方程的思想解等差數(shù)列是常見題型,解決此類問題需要抓住基本量、,掌握好設(shè)未知數(shù)、列出方程、解方程三個環(huán)節(jié),常通過“設(shè)而不求,整體代入”來簡化運算8、A【解析】由得出函數(shù)是奇函數(shù),再求得,,運用排除法可得選項.【詳解】法一:由函數(shù),則,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,所以排除B;因為,所以排除D;因為,所以排除C,故選:A.【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.9、D【解析】命題是假命題,命題是真命題,根據(jù)復(fù)合命題的真值表可判斷真假.【詳解】因為,故命題是假命題,又命題是真命題,故為假,為假,為假,為真命題,故選D.【點睛】復(fù)合命題的真假判斷有如下規(guī)律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.10、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車間抽取的人數(shù)為人故選:B11、C【解析】求導(dǎo)后,由可解得結(jié)果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的增區(qū)間,屬于基礎(chǔ)題.12、C【解析】設(shè),由,根據(jù)兩點間的距離公式表示出,分類討論求出的最大值,再構(gòu)建齊次不等式,解出即可【詳解】設(shè),由,因為,,所以,因為,當(dāng),即時,,即,符合題意,由可得,即;當(dāng),即時,,即,化簡得,,顯然該不等式不成立故選:C【點睛】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由等差數(shù)列的通項公式求出公差,進(jìn)而求出.【詳解】設(shè)該等差數(shù)列的公差為,則,所以.故答案為:4.14、【解析】分類討論,兩種情況,結(jié)合直線平行的知識得出實數(shù).【詳解】當(dāng)時,直線與直線垂直;當(dāng)時,,則且,解得.故答案為:15、【解析】由于,關(guān)于軸對稱,故由題設(shè)知C經(jīng)過,兩點,C不經(jīng)過點,然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關(guān)于軸對稱,故由題設(shè)知經(jīng)過,兩點,所以.又由知,不經(jīng)過點,所以點在上,所以.因此,故方程為.故答案為:.【點睛】求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出,;若焦點位置不明確,則需要分焦點在軸上和軸上兩種情況討論,也可設(shè)橢圓的方程為16、2【解析】首先利用二項展開式的通項公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開式的通項為,令,則,即,故,令,得.又,所以故故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)先對函數(shù)求導(dǎo),根據(jù)題中條件,列出方程組求解,即可得出結(jié)果;(2)先由(1)得到,導(dǎo)數(shù)的方法研究其單調(diào)性,進(jìn)而可求出最值.【詳解】(1)因為,所以,又函數(shù)在處取得極值7,,解得;,所以,由得或;由得;滿足題意;(2)又,由(1)得在上單調(diào)遞增,在上單調(diào)遞減,因此【點睛】方法點睛:該題考查的是有關(guān)利用導(dǎo)數(shù)研究函數(shù)的問題,解題方法如下:(1)先對函數(shù)求導(dǎo),根據(jù)題意,結(jié)合函數(shù)在某個點處取得極值,導(dǎo)數(shù)為0,函數(shù)值為極值,列出方程組,求得結(jié)果;(2)將所求參數(shù)代入,得到解析式,利用導(dǎo)數(shù)研究其單調(diào)性,得到其最大值.18、(1)(2)x=3或【解析】(1)首先利用點斜式求出直線的方程,再利用點到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計算可得;(2)依題意可得點在圓外,分直線的斜率存在與不存在兩種情況討論,當(dāng)直線的斜率不存在直線得到直線方程,但直線的斜率存在時設(shè)直線方程為,利用點到直線的距離公式得到方程,解得,即可得解;【小問1詳解】解:根據(jù)題意,直線的方程為,即,則圓心到直線的距離為故;【小問2詳解】解:根據(jù)題意,點在圓外,分兩種情況討論:當(dāng)直線的斜率不存在時,過點的直線方程是,此時與圓C:相切,滿足題意;當(dāng)直線的斜率存在時,設(shè)直線方程為,即,直線與圓相切時,圓心到直線的距離為解得此時,直線的方程為,所以滿足條件的直線的方程是或.19、(1)證明見解析;(2).【解析】建立空間直角坐標(biāo)系.(1)方法一,利用向量的方法,通過計算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結(jié)合證得,由此證得平面.(2)通過平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點建立空間直角坐標(biāo)系,可得,,,.(1)證明法一:因為,,,所以,,所以,,,平面,平面,所以平面.證明法二:因為平面,平面,所以,又因為,即,,平面,平面,所以平面.(2)由(1)知平面的一個法向量,設(shè)平面的法向量,又,,且所以所以平面的一個法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數(shù)求導(dǎo),由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,結(jié)合方程的根與系數(shù)關(guān)系可求,(2)由(1)可求,然后結(jié)合導(dǎo)數(shù)可判斷函數(shù)的單調(diào)性,進(jìn)而可求函數(shù)的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調(diào)遞增,在上單調(diào)遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點睛】本題考查利用極值求函數(shù)的參數(shù),以及利用導(dǎo)數(shù)求函數(shù)的最值問題,屬于中檔題21、(1)(2)存在,定點【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)對直線的斜率是否存在進(jìn)行分類討論,設(shè)出直線的方程并與橢圓方程聯(lián)立,結(jié)合是常數(shù)列方程,從而求得定點的坐標(biāo).小問1詳解】,,由題可得:.【小問2詳解】當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為,設(shè),,聯(lián)立方程組,整理得,可得,所以則恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)后修復(fù)中心合同范本
- 勞務(wù)代管合同范本
- 加盟托管經(jīng)營合同范本
- 出租吊車服務(wù)合同范本
- 單位代建房合同范例
- 2013版建設(shè)合同范本
- 單位監(jiān)控安裝合同范本
- 個人雇傭出海作業(yè)合同范本
- 加工貨款合同貨款合同范本
- 個人山林承包合同范本
- 資產(chǎn)運營總經(jīng)理崗位職責(zé)
- (完整文本版)日文履歷書(文本テンプレート)
- 110kV變電站專項電氣試驗及調(diào)試方案
- 2023三年級語文下冊 第八單元 語文園地配套教案 新人教版
- 全國川教版信息技術(shù)八年級下冊第一單元第1節(jié) 《設(shè)計創(chuàng)意掛件》教學(xué)設(shè)計
- 2024時事政治必考試題庫(預(yù)熱題)
- DZ∕T 0215-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 煤(正式版)
- 品質(zhì)部組織架構(gòu)圖構(gòu)
- 《幼兒園性教育》
- (高清版)TDT 1040-2013 土地整治項目制圖規(guī)范
- 《漏》公開課一等獎創(chuàng)新教案設(shè)計
評論
0/150
提交評論