上海曹楊二中2025屆高二上數(shù)學期末調研試題含解析_第1頁
上海曹楊二中2025屆高二上數(shù)學期末調研試題含解析_第2頁
上海曹楊二中2025屆高二上數(shù)學期末調研試題含解析_第3頁
上海曹楊二中2025屆高二上數(shù)學期末調研試題含解析_第4頁
上海曹楊二中2025屆高二上數(shù)學期末調研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海曹楊二中2025屆高二上數(shù)學期末調研試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設異面直線、的方向向量分別為,,則異面直線與所成角的大小為()A. B.C. D.2.設α,β是兩個不同的平面,m,n是兩條不重合的直線,下列命題中為真命題的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么3.若函數(shù)在區(qū)間上單調遞增,則實數(shù)的取值范圍是A. B.C. D.4.年月日,很多人的微信圈都在轉發(fā)這樣一條微信:“,所遇皆為對,所做皆稱心””.形如“”的數(shù)字叫“回文數(shù)”,即從左到右讀和從右到左讀都一樣的正整數(shù),則位的回文數(shù)共有()A. B.C. D.5.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.6.已知數(shù)列滿足,且,那么()A. B.C. D.7.圓與圓的位置關系是()A.外離 B.外切C.相交 D.內切8.如圖,過拋物線的焦點的直線交拋物線于點、,交其準線于點,若,且,則的值為()A. B.C. D.9.已知函數(shù)是定義在上奇函數(shù),,當時,有成立,則不等式的解集是()A. B.C. D.10.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,5,11,21,37,61,則該數(shù)列的第7項為()A.95 B.131C.139 D.14111.若,則()A.1 B.2C.3 D.412.拋物線的焦點為,準線為,焦點在準線上的射影為點,過任作一條直線交拋物線于兩點,則為()A.銳角 B.直角C.鈍角 D.銳角或直角二、填空題:本題共4小題,每小題5分,共20分。13.如圖,甲站在水庫底面上的點處,乙站在水壩斜面上的點處,已知庫底與水壩斜面所成的二面角為,測得從,到庫底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________14.某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為____________.15.命題“若,則二元一次不等式表示直線的右上方區(qū)域(包含邊界)”的條件:_________,結論:_____________,它是_________命題(填“真”或“假”).16.已知遞增數(shù)列共有2021項,且各項均不為零,,如果從中任取兩項,當時,仍是數(shù)列中的項,則的范圍是________________,數(shù)列的所有項和________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足,前7項和為(Ⅰ)求的通項公式(Ⅱ)設數(shù)列滿足,求的前項和.18.(12分)已知三棱柱中,,,平面ABC,,E為AB中點,D為上一點(1)求證:;(2)當D為中點時,求平面ADC與平面所成角的正弦值19.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點,.(1)證明:;(2)求直線與平面所成角的正弦值.20.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標;(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點21.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數(shù),使以為直徑的圓經過坐標原點?若存在,求出的值;若不存在,說明理由.22.(10分)已知三棱柱的側棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用空間向量夾角的公式直接求解.【詳解】,,,.由異面直線所成角的范圍為,故異面直線與所成的角為.故選:C2、C【解析】AB.利用兩平面的位置關系判斷;CD.利用面面平行的判定定理判斷;【詳解】A.如果,,n∥β,那么α,β相交或平行;故錯誤;B.如果,,,那么α,β垂直,故錯誤;C.如果m∥n,,則,又,那么α∥β,故C正確;D錯誤,故選:C3、D【解析】,∵函數(shù)在區(qū)間單調遞增,∴在區(qū)間上恒成立.∴,而在區(qū)間上單調遞減,∴.∴取值范圍是.故選D考點:利用導數(shù)研究函數(shù)的單調性.4、C【解析】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,確定這四位數(shù)的選數(shù)的種數(shù),利用分步乘法計數(shù)原理可得結果.【詳解】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,首位數(shù)不能放零,首位數(shù)共有種選擇,第二位、第三位、第四位數(shù)均有種選擇,因此,位的回文數(shù)共有個.故選:C.5、D【解析】根據(jù)長方體中,異面直線和所成角即為直線和所成角,再結合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.6、D【解析】由遞推公式得到,,,再結合已知即可求解.【詳解】解:由,得,,又,那么故選:D7、C【解析】利用圓心距與半徑的關系確定正確選項.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以兩圓相交.故選:C8、B【解析】分別過點、作準線的垂線,垂足分別為點、,設,根據(jù)拋物線的定義以及直角三角形的性質可求得,結合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準線的垂線,垂足分別為點、,設,則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.9、A【解析】構造函數(shù),分析該函數(shù)的定義域與奇偶性,利用導數(shù)分析出函數(shù)在上為增函數(shù),從而可知該函數(shù)在上為減函數(shù),綜合可得出原不等式的解集.【詳解】令,則函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),所以,,當時,,所以,函數(shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),由等價于或:當時,由可得;當時,由可得.綜上所述,不等式的解集為.故選:A.10、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個等差數(shù)列,設原數(shù)列的第7項為,則,解得,所以原數(shù)列的第7項為95,故選:A11、C【解析】由二項分布的方差公式即可求解.【詳解】解:因為,所以.故選:C.12、D【解析】設出直線方程,聯(lián)立拋物線方程,利用韋達定理,求得,根據(jù)其結果即可判斷和選擇.【詳解】為說明問題,不妨設拋物線方程,則,直線斜率顯然不為零,故可設直線方程為,聯(lián)立,可得,設坐標為,則,故,當時,,;當時,,;故為銳角或直角.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先構造二面角的平面角,如圖,再分別在和中求解.【詳解】作,且,連結,,,,平面且,四邊形時平行四邊形,,平面,平面,中,,中,.故答案為:14、160【解析】∵某個年級共有980人,要從中抽取280人,∴抽取比例為,∴此樣本中男生人數(shù)為,故答案為160.考點:本題考查了分層抽樣的應用點評:掌握分層抽樣的概念是解決此類問題的關鍵,屬基礎題15、①.②.二元一次不等式表示直線的右上方區(qū)域(包含邊界)③.真【解析】由二元一次不等式的意義可解答問題.【詳解】因為,二元一次不等式所表示的區(qū)域如下圖所示:所以在的條件下,二元一次不等式表示直線的右上方區(qū)域(包含邊界),此命題是真命題.故答案為:;二元一次不等式表示直線的右上方區(qū)域(包含邊界);真16、①.②.1011【解析】根據(jù)題意得到,得到,,,,進而得到,從而即可求得的值.【詳解】由題意,遞增數(shù)列共有項,各項均不為零,且,所以,所以的范圍是,因為時,仍是數(shù)列中的項,即,且上述的每一項均在數(shù)列中,所以,,,,即,所以,所以.故答案為:;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】(1)根據(jù)等差數(shù)列的求和公式可得,得,然后由已知可得公差,進而求出通項;(2)先明確=,為等差乘等比型通項故只需用錯位相減法即可求得結論.解析:(Ⅰ)由,得因為所以(Ⅱ)18、(1)證明見解析;(2).【解析】(1)利用線面垂直的性質定理及線面垂直的判定定理即證;(2)利用坐標法即求.【小問1詳解】∵,E為AB中點,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小問2詳解】以C點為坐標原點,CA,CB,分別為x,y,z軸建立空間直角坐標系,不妨設,則平面的法向量為,設平面ADC法向量為,則,∴,即,令,則∴平面ADC與平面所成角的余弦值為,所以平面ADC與平面所成角的正弦值.19、(1)證明見解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點,根據(jù)題意可知,兩兩垂直,所以以點為坐標原點,建立空間直角坐標系,再分別求出向量和平面的一個法向量,即可根據(jù)線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因為,所以,取中點,連接,則兩兩垂直,以點為坐標原點,如圖所示,建立空間直角坐標系,則,又為中點,所以.由(1)得平面,所以平面的一個法向量從而直線與平面所成角的正弦值為【點睛】本題第一問主要考查線面垂直的相互轉化,要證明,可以考慮,題中與有垂直關系直線較多,易證平面,從而使問題得以解決;第二問思路直接,由第一問的垂直關系可以建立空間直角坐標系,根據(jù)線面角的向量公式即可計算得出20、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標;(2)可設直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據(jù),可得,從而可求得參數(shù)的關系,即可得出結論.【小問1詳解】解:設,,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標為;【小問2詳解】證明:由題意知直線不能與軸平行,可設直線的方程為,與拋物線聯(lián)立得,消去得,設,,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當時,,所以直線過定點21、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,利用弦長公式可求得;(2)假設存在實數(shù),使以為直徑的圓經過坐標原點,設、,將直線與雙曲線的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結合韋達定理可得出,即可得出結論.【小問1詳解】解:設點、,當時,聯(lián)立,可得,,由韋達定理可得,,所以,.【小問2詳解】解:假設存在實數(shù),使以為直徑的圓經過坐標原點,設、,聯(lián)立得,由題意可得,解得且,由韋達定理可知,因為以為直徑的圓經過坐標原點,則,所以,,整理可得,該方程無實解,故不存在.22、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點為原點建立空間直角坐標系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個平面的法向量,利用兩個向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點為原點建立空間直角坐標系.根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論