版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省永勝縣第二中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點(diǎn),則直線的傾斜角為()A. B.C. D.2.已知函數(shù)f(x)的定義域為[-1,5],其部分自變量與函數(shù)值的對應(yīng)情況如下表:x-10245f(x)312.513f(x)的導(dǎo)函數(shù)的圖象如圖所示.給出下列四個結(jié)論:①f(x)在區(qū)間[-1,0]上單調(diào)遞增;②f(x)有2個極大值點(diǎn);③f(x)的值域為[1,3];④如果x∈[t,5]時,f(x)的最小值是1,那么t的最大值為4其中,所有正確結(jié)論的序號是()A.③ B.①④C.②③ D.③④3.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象可能是()A. B.C. D.4.設(shè)點(diǎn)是點(diǎn),,關(guān)于平面的對稱點(diǎn),則()A.10 B.C. D.385.古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經(jīng)過了500年,到了3世紀(jì),希臘數(shù)學(xué)家帕普斯在他的著作《數(shù)學(xué)匯篇》中,完善了歐幾里得關(guān)于圓錐曲線的統(tǒng)一定義,并對這一定義進(jìn)行了證明.他指出,到定點(diǎn)的距離與到定直線的距離的比是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線;當(dāng)時,軌跡為橢圓;當(dāng)時,軌跡為拋物線;當(dāng)時,軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.6.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點(diǎn),,分別為左、右焦點(diǎn),為橢圓上一點(diǎn),下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個內(nèi)角為7.下面三種說法中,正確說法的個數(shù)為()①如果兩個平面有三個公共點(diǎn),那么這兩個平面重合;②兩條直線可以確定一個平面;③若,,,則A.1 B.2C.3 D.08.拋物線的準(zhǔn)線方程是,則實數(shù)的值為()A. B.C.8 D.9.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件10.從集合{2,3,4,5}中隨機(jī)抽取一個數(shù)m,從集合{1,3,5}中隨機(jī)抽取一個數(shù)n,則向量=(m,n)與向量=(1,-1)垂直的概率為()A. B.C. D.11.過雙曲線的右頂點(diǎn)作斜率為的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為.若,則雙曲線的離心率是A. B.C. D.12.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓的圓心坐標(biāo)為___________;半徑為___________.14.一個質(zhì)地均勻的正四面體,其四個面涂有不同的顏色,拋擲這個正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍(lán),綠},設(shè)事件{紅,黃},事件{紅,藍(lán)},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨(dú)立事件;③F與G是對立事件;④F與G是獨(dú)立事件.其中正確判斷的序號是______(請寫出所有正確判斷的序號)15.在正方體中,二面角的大小為__________(用反三角表示)16.已知點(diǎn)是橢圓上的一點(diǎn),分別為橢圓的左、右焦點(diǎn),已知=120°,且,則橢圓的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,,,(1)求證:∥平面;(2)求證:平面平面18.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數(shù)a取值范圍.①關(guān)于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)19.(12分)已知等差數(shù)列滿足,(1)求的通項公式;(2)若等比數(shù)列的前n項和為,且,,,求滿足的n的最大值20.(12分)已知拋物線C:x2=2py的焦點(diǎn)為F,點(diǎn)N(t,1)在拋物線C上,且|NF|=.(1)求拋物線C的方程;(2)過點(diǎn)M(0,1)的直線l交拋物線C于不同的兩點(diǎn)A,B,設(shè)O為坐標(biāo)原點(diǎn),直線OA,OB的斜率分別為k1,k2,求證:k1k2為定值.21.(12分)已知圓C:,圓C與x軸交于A,B兩點(diǎn)(1)求直線y=x被圓C所截得的弦長;(2)圓M過點(diǎn)A,B,且圓心在直線y=x+1上,求圓M的方程22.(10分)浙江省新高考采用“3+3”模式,其中語文、數(shù)學(xué)、外語三科為必考科目,另外考生根據(jù)自己實際需要在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門科目中自選3門參加考試.下面是某校高一200名學(xué)生在一次檢測中的物理、化學(xué)、生物三科總分成績,以組距20分成7組:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],畫出頻率分布直方圖如下圖所示(1)求頻率分布直方圖中的值;(2)由頻率分布直方圖,求物理、化學(xué)、生物三科總分成績的第60百分位數(shù);(3)若小明決定從“物理、化學(xué)、生物、政治、技術(shù)”五門學(xué)科中選擇三門作為自己的選考科目,求小明選中“技術(shù)”的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由兩點(diǎn)坐標(biāo),求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設(shè)直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A2、D【解析】直接利用函數(shù)的導(dǎo)函數(shù)的圖像,進(jìn)一步畫出函數(shù)的圖像,進(jìn)一步利用函數(shù)的性質(zhì)的應(yīng)用求出函數(shù)的單調(diào)區(qū)間,函數(shù)的極值和端點(diǎn)值可得結(jié)論【詳解】解:由f(x)的導(dǎo)函數(shù)的圖像,畫出的圖像,如圖所示,對于①,在區(qū)間上單調(diào)遞減,所以①錯誤,對于②,有1個極大值點(diǎn),2個極小值點(diǎn),所以②錯誤,對于③,根據(jù)函數(shù)的極值和端點(diǎn)值可知的值域為,所以③正確,對于④,如果x∈[t,5]時,由圖像可知,當(dāng)f(x)的最小值是1時,t的最大值為4,所以④正確,故選:D3、A【解析】根據(jù)原函數(shù)圖象判斷出函數(shù)單調(diào)性,由此判斷導(dǎo)函數(shù)的圖象.【詳解】原函數(shù)在上從左向右有增、減、增,個單調(diào)區(qū)間;在上遞減.所以導(dǎo)函數(shù)在上從左向右應(yīng)為:正、負(fù)、正;在上應(yīng)為負(fù).所以A選項符合.故選:A4、A【解析】寫出點(diǎn)坐標(biāo),由對稱性易得線段長【詳解】點(diǎn)是點(diǎn),,關(guān)于平面的對稱點(diǎn),的橫標(biāo)和縱標(biāo)與相同,而豎標(biāo)與相反,,,,直線與軸平行,,故選:A5、C【解析】對方程進(jìn)行化簡可得雙曲線上一點(diǎn)到定點(diǎn)與定直線之比為常數(shù),進(jìn)而可得結(jié)果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點(diǎn)到定點(diǎn)與定直線之比為常數(shù),又由,可得,故選:C.6、B【解析】先求出橢圓的頂點(diǎn)和焦點(diǎn)坐標(biāo),對于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【詳解】∵橢圓∴對于A,若,則,∴,∴,不滿足條件,故A不符合條件;對于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對于D,四邊形的一個內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【點(diǎn)睛】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應(yīng)用,充分利用建立的等式是解題關(guān)鍵.7、A【解析】對于①,有兩種情況,對于②考慮異面直線,對于③根據(jù)線面公理可判斷.【詳解】如果兩個平面有三個公共點(diǎn),那么這兩個平面重合或者是相交,故①不正確;兩條異面直線不能確定一個平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個說法是正確的.故選:A8、B【解析】化簡方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因為拋物線的準(zhǔn)線方程為,所以,解得.故選:B.9、B【解析】根據(jù)充分條件、必要條件、充要條件的定義依次判斷.【詳解】當(dāng)時,,非充分,故A錯.當(dāng)不能推出,所以非充分,,所以是必要條件,故B正確.當(dāng)在中,,反之,故為充要條件,故C錯;當(dāng)時,,,,充分條件,因為,當(dāng)時成立,非必要條件,故D錯.故選:B.10、A【解析】根據(jù)分步計數(shù)乘法原理求得所有的)共有12個,滿足兩個向量垂直的共有2個,利用古典概型公式可得結(jié)果.【詳解】集合{2,3,4,5}中隨機(jī)抽取一個數(shù),有4種方法;從集合{1,3,5}中隨機(jī)抽取一個數(shù),有3種方法,所以,所有的共有個,由向量與向量垂直,可得,即,故滿足向量與向量垂直的共有2個:,所以向量與向量垂直的概率為,故選A.【點(diǎn)睛】本題主要考查分步計數(shù)乘法原理的應(yīng)用、向量垂直的性質(zhì)以及古典概型概率公式的應(yīng)用,屬于中檔題.在解古典概型概率題時,首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率.11、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點(diǎn):直線與圓錐曲線的綜合問題;雙曲線的簡單性質(zhì)12、A【解析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】配方后可得圓心坐標(biāo)和半徑【詳解】將圓的一般方程化為圓標(biāo)準(zhǔn)方程是,圓心坐標(biāo)為,半徑為故答案為:;14、②③【解析】由對立和互斥事件的定義判斷①③;由獨(dú)立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對立事件;,則E與F是獨(dú)立事件;,,則F與G不是獨(dú)立事件故答案為:②③15、【解析】作出二面角的平面角,并計算出二面角的大小.【詳解】設(shè),畫出圖像如下圖所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小為.故答案為:16、【解析】設(shè),由余弦定理知,所以,故填.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)線面平行的判定,證明即可;(2)過C作,垂足為M,根據(jù)勾股定理證明,再根據(jù)線面垂直的性質(zhì)與判定證明平面BCE即可【小問1詳解】證明:因為四邊形ABEF為矩形,所以,又平面BCE,平面BCE,所以平面BCE【小問2詳解】過C作,垂足為M,則四邊形ADCM為矩形因為,,所以,,,,所以,所以因為平面ABCD,,所以平面ABCD,所以又平面BCE,平面BCE,,所以平面BCE,又平面ACF,所以平面平面BCE18、答案見解析【解析】根據(jù)題意,分析、為真時的取值范圍,又由復(fù)合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關(guān)于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數(shù)a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當(dāng)且僅當(dāng)時取“=”號,∴,由為真命題知,解得.實數(shù)a的取值范圍.19、(1)(2)10【解析】(1)設(shè)等差數(shù)列公差為d,根據(jù)已知條件列關(guān)于和d的方程組即可求解;(2)設(shè)等比數(shù)列公比為q,根據(jù)已知條件求出和q,根據(jù)等比數(shù)列求和公式即可求出,再解關(guān)于n的不等式即可.【小問1詳解】由題意得,解得,∴【小問2詳解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值為1020、(1)x2=2y;(2)證明見解析【解析】(1)利用拋物線的定義進(jìn)行求解即可;(2)設(shè)直線l的直線方程與拋物線方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行證明即可.【小問1詳解】∵點(diǎn)N(t,1)在拋物線C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴拋物線C的方程為x2=2y;【小問2詳解】依題意,設(shè)直線l:y=kx+1,A(x1,y1),B(x2,y2),聯(lián)立,得x2﹣2kx﹣2=0.則x1x2=﹣2,∴.故k1k2為定值.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用拋物線的定義是解題的關(guān)鍵.21、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點(diǎn)到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達(dá)定理,求出圓心的橫坐標(biāo),即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設(shè)A(x1,y1),B(x2,y2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新形勢下快捷酒店行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實施研究報告
- 新形勢下虛擬現(xiàn)實VR行業(yè)快速做大市場規(guī)模戰(zhàn)略制定與實施研究報告
- 2024年一年級語文上冊教學(xué)總結(jié)
- 2019-2025年中國番紅花行業(yè)市場運(yùn)營現(xiàn)狀及投資規(guī)劃研究建議報告
- 三年級數(shù)學(xué)計算題專項練習(xí)及答案集錦
- 船舶玻璃纖維通信天線桿 10米高透波絕緣監(jiān)控支架 玻璃鋼照明燈桿
- 多肉病蟲知識培訓(xùn)課件
- 二零二五年度商務(wù)中心租賃合作協(xié)議3篇
- 二零二五年度醫(yī)療健康大數(shù)據(jù)分析與咨詢服務(wù)合同2篇
- 水平評價類技能人員職業(yè)資格退出目錄安排(水平類76項)
- 稻草購銷合同模板
- 執(zhí)法中隊競聘演講稿
- 國有企業(yè)員工守則
- CSR社會責(zé)任管理手冊模板
- 毛澤東軍事思想概述(新)
- 蘇教版六年級數(shù)學(xué)上冊集體備課記載表
- 錨桿框格梁施工技術(shù)交底
- 商戶清場協(xié)議書
- 涉詐風(fēng)險賬戶審查表
- 10以內(nèi)的加減法(兩步計算)練習(xí)
- GMP廠房設(shè)施和設(shè)備培訓(xùn)課件
評論
0/150
提交評論