上海市嘉定區(qū)市級名校2025屆數(shù)學高二上期末質量檢測試題含解析_第1頁
上海市嘉定區(qū)市級名校2025屆數(shù)學高二上期末質量檢測試題含解析_第2頁
上海市嘉定區(qū)市級名校2025屆數(shù)學高二上期末質量檢測試題含解析_第3頁
上海市嘉定區(qū)市級名校2025屆數(shù)學高二上期末質量檢測試題含解析_第4頁
上海市嘉定區(qū)市級名校2025屆數(shù)學高二上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市嘉定區(qū)市級名校2025屆數(shù)學高二上期末質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若傾斜角為的直線過,兩點,則實數(shù)()A. B.C. D.2.若a>0,b>0,且函數(shù)f(x)=4x3﹣ax2﹣2bx+2在x=1處有極值,則ab的最大值等于A.2 B.3C.6 D.93.橢圓上的一點M到其左焦點的距離為2,N是的中點,則等于()A.1 B.2C.4 D.84.已知橢圓的一個焦點坐標是,則()A.5 B.2C.1 D.5.已知圓:,是直線的一點,過點作圓的切線,切點為,,則的最小值為()A. B.C. D.6.若直線與曲線有兩個公共點,則實數(shù)的取值范圍為()A. B.C. D.7.若點P為拋物線y=2x2上的動點,F(xiàn)為拋物線的焦點,則|PF|的最小值為()A.2 B.C. D.8.小明騎車上學,開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.9.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.10.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg11.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標為3,則該拋物線的準線方程為()A. B.C. D.12.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在一村莊正西方向處有一臺風中心,它正向東北方向移動,移動速度的大小為,距臺風中心以內的地區(qū)將受到影響,若臺風中心的這種移動趨勢不變,則村莊所在地大約有_______小時會受到臺風的影響.(參考數(shù)據(jù):)14.已知等差數(shù)列的前項和為,則數(shù)列的前2022項的和為___________.15.設數(shù)列滿足,則an=________16.已知向量,,不共線,點在平面內,若存在實數(shù),,,使得,那么的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,動點,滿足,記點的軌跡為(1)請說明是什么曲線,并寫出它的方程;(2)設不過原點且斜率為的直線與交于不同的兩點,,線段的中點為,直線與交于兩點,,請判斷與的關系,并證明你的結論18.(12分)已知:,,:,,且為真命題,求實數(shù)的取值范圍.19.(12分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值20.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.21.(12分)在平面直角坐標系中,已知圓,點P在圓上,過點P作x軸的垂線,垂足為是的中點,當P在圓M上運動時N形成的軌跡為C(1)求C的軌跡方程;(2)若點,試問在x軸上是否存在點M,使得過點M的動直線交C于兩點時,恒有?若存在,求出點M的坐標;若不存在,請說明理由22.(10分)已知橢圓:()的左、右焦點分別為,焦距為,過點作直線交橢圓于兩點,的周長為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點,求定點與交點所構成的三角形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)直線的傾斜角和斜率的關系得到直線的斜率為,再根據(jù)兩點的斜率公式計算可得;【詳解】解:因為直線的傾斜角為,所以直線的斜率為,所以,解得;故選:C2、D【解析】求出導函數(shù),利用函數(shù)在極值點處的導數(shù)值為0得到a,b滿足的條件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因為在x=1處有極值∴a+b=6∵a>0,b>0∴當且僅當a=b=3時取等號所以ab的最大值等于9故選D點評:本題考查函數(shù)在極值點處的導數(shù)值為0、考查利用基本不等式求最值需注意:一正、二定、三相等3、C【解析】先利用橢圓定義得到,再利用中位線定理得即可.【詳解】由橢圓方程,得,由橢圓定義得,又,,又為的中點,為的中點,線段為中位線,∴.故選:C.4、C【解析】根據(jù)題意橢圓焦點在軸上,且,將橢圓方程化為標準形式,從而得出,得出答案.【詳解】由焦點坐標是,則橢圓焦點在軸上,且將橢圓化為,則由,焦點坐標是,則,解得故選:C5、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長定理,將問題轉化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設四邊形的面積為,由題設及圓的切線性質得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A6、D【解析】由題可知,曲線表示一個半圓,結合半圓的圖像和一次函數(shù)圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當直線與半圓O相切時,直線與半圓O有一個公共點,此時,,所以,由圖可知,此時,所以,當直線如圖過點A、B時,直線與半圓O剛好有兩個公共點,此時,由圖可知,當直線介于與之間時,直線與曲線有兩個公共點,所以.故選:D.7、D【解析】根據(jù)拋物線的定義得出當點P在拋物線的頂點時,|PF|取最小值.【詳解】根據(jù)題意,設拋物線y=2x2上點P到準線的距離為d,則有|PF|=d,拋物線的方程為y=2x2,即x2=y(tǒng),其準線方程為y=-,∴當點P在拋物線的頂點時,d有最小值,即|PF|min=.故選:D8、C【解析】先研究四個選項中圖象的特征,再對照小明上學路上的運動特征,兩者對應即可選出正確選項.【詳解】考查四個選項,橫坐標表示時間,縱坐標表示的是離開學校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學,開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時間加快速度行駛,此一段時間段內函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點睛】本題考查函數(shù)的表示方法,關鍵是理解坐標系的度量與小明上學的運動特征,屬于基礎題.9、B【解析】首先根據(jù)題意設出拋物線的方程,利用點在曲線上的條件為點的坐標滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.10、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D11、B【解析】設,進而根據(jù)題意,結合中點弦的問題得,進而再求解準線方程即可.【詳解】解:根據(jù)題意,設,所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標為3,所以,即,所以拋物線,準線方程為.故選:B12、D【解析】利用等差數(shù)列下標和的性質求值即可.【詳解】由等差數(shù)列下標和性質知:.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】結合勾股定理求得正確答案.【詳解】如圖,設村莊為A,開始臺風中心的位置為B,臺風路徑為直線,因為點A到直線的距離為,∴村莊所在地受到臺風影響的時間約為:(小時).故答案為:本卷包括必考題和選考題兩部分.第17題~第21題為必考題,每個試題考生都必須作答第22題~第23題為選考題,考生根據(jù)要求作答14、【解析】先設等差數(shù)列的公差為,根據(jù)題中條件,求出首項和公差,得出前項和,再由裂項相消的方法,即可求出結果.【詳解】設等差數(shù)列的公差為,因為,,所以,解得,因此,所以,所以數(shù)列的前2022項的和為.故答案:.15、【解析】先由題意得時,,再作差得,驗證時也滿足【詳解】①當時,;當時,②①②得,當也成立.即故答案為:16、1【解析】通過平面向量基本定理推導出空間向量基本定理得推論.【詳解】因為點在平面內,則由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,從而.故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)橢圓,(2),證明見解析【解析】(1)結合橢圓第一定義直接判斷即可求出的軌跡為;(2)設直線的方程為,,,聯(lián)立橢圓方程,寫出韋達定理;由中點公式求出點,進而得出直線方程,聯(lián)立橢圓方程求出,結合弦長公式可求,可轉化為,結合韋達定理可化簡,進而得證.【小問1詳解】設,,則因為,滿足,即動點表示以點,為左、右焦點,長軸長為4,焦距為的橢圓,其軌跡的方程為;【小問2詳解】可以判斷出,下面進行證明:設直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點坐標為,直線方程為,由方程組,得,,所以又所以.18、【解析】由,為真,可得對任意的恒成立,從而分和求出實數(shù)的取值范圍,再由,,可得關于的方程有實根,則有,從而可求出實數(shù)的取值范圍,然后求交集可得結果【詳解】解:可化為.若:,為真,則對任意的恒成立.當時,不等式可化為,顯然不恒成立,當時,有且,所以.①若:,為真,則關于的方程有實根,所以,即,所以或.②又為真命題,故,均為真命題.所以由①②可得的取值范圍為.19、(1)證明見解析;(2).【解析】(1)過點作交的延長線于點,連接,由,,證出平面,即可證出.(2)以為原點,的方向分別為軸正方向,建立空間直角坐標系,寫出相應點的坐標,利用,即可得到答案.【小問1詳解】過點作交的延長線于點,連接,因為,所以,又因為,所以,所以,即,.因為,所以平面,因為平面,所以【小問2詳解】因為平面平面,平面平面,所以平面,以為原點,的方向分別為軸正方向,建立如圖所示的空間直角坐標系,則,可得,因為,所以直線與所成角的余弦值為20、(1);(2)存在,,.【解析】(1)根據(jù)橢圓E:(a,b>0)過M(2,),N(,1)兩點,直接代入方程解方程組即可.(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當切線斜率存在時,設該圓的切線方程為,聯(lián)立,根據(jù),結合韋達定理運算,同時滿足,則存在,否則不存在,當切線斜率不存在時,驗證即可;在該圓的方程存在時,利用弦長公式結合韋達定理得到求解.【詳解】(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以,解得,所以,所以橢圓E的方程為.(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為,聯(lián)立得,則△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,所以,則所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為,所以,,①當時,,因為,所以,所以,所以,當且僅當時取”=”.②當時,.③當AB的斜率不存在時,兩個交點為或,所以此時,綜上,|AB|的取值范圍為,即:【點睛】思路點睛:1、解決直線與橢圓的位置關系的相關問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應用根與系數(shù)的關系建立方程,解決相關問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單2、設直線與橢圓的交點坐標為A(x1,y1),B(x2,y2),則(k為直線斜率)注意:利用公式計算直線被橢圓截得的弦長是在方程有解的情況下進行的,不要忽略判別式大于零21、(1);(2)不存在,理由見解析.【解析】(1)設,根據(jù)中點坐標公式用N的坐標表示P的坐標,將P的坐標代入圓M的方程化簡即可得N的軌跡方程;(2)假設存在,設M為(m,0),設直線l斜率為k,表示其方程,l方程和橢圓方程聯(lián)立,根據(jù)韋達定理得根與系數(shù)關系,由,得,代入根與系數(shù)的關系求k與m關系即可判斷.【小問1詳解】設,因為N為的中點,,又P點在圓上,,即C軌跡方程為;【小問2詳解】不存在滿足條件的點M,理由如下:假設存在滿足條件的點M,設點M的坐標為,直線的斜率為k,則直線的方程為,由消去y并整理,得,設,則由,得,即,將代入上式并化簡,得將式代入上式,有,解得,而,求得點M在橢圓外,若與橢圓無交點不滿足條件,所以不存在這樣的點M【點睛】本題關鍵是由得,將幾何關系轉化為代數(shù)關系進行計算.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論