2025屆山東省日照農(nóng)業(yè)學校數(shù)學高三上期末檢測試題含解析_第1頁
2025屆山東省日照農(nóng)業(yè)學校數(shù)學高三上期末檢測試題含解析_第2頁
2025屆山東省日照農(nóng)業(yè)學校數(shù)學高三上期末檢測試題含解析_第3頁
2025屆山東省日照農(nóng)業(yè)學校數(shù)學高三上期末檢測試題含解析_第4頁
2025屆山東省日照農(nóng)業(yè)學校數(shù)學高三上期末檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省日照農(nóng)業(yè)學校數(shù)學高三上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設分別為的三邊的中點,則()A. B. C. D.2.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁3.設,是方程的兩個不等實數(shù)根,記().下列兩個命題()①數(shù)列的任意一項都是正整數(shù);②數(shù)列存在某一項是5的倍數(shù).A.①正確,②錯誤 B.①錯誤,②正確C.①②都正確 D.①②都錯誤4.近年來,隨著網(wǎng)絡的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學為了調(diào)查在校大學生使用的主要用途,隨機抽取了名大學生進行調(diào)查,各主要用途與對應人數(shù)的結果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學生人數(shù)多于主要看社區(qū)、新聞、資訊的大學生人數(shù);②可以估計不足的大學生使用主要玩游戲;③可以估計使用主要找人聊天的大學生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,輸出的結果為()A. B.4 C. D.6.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.7.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了8.已知集合,,,則集合()A. B. C. D.9.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.10.設函數(shù),當時,,則()A. B. C.1 D.11.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.12.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),且由的最大值是_________14.點到直線的距離為________15.設、、、、是表面積為的球的球面上五點,四邊形為正方形,則四棱錐體積的最大值為__________.16.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F(xiàn)分別為,的中點,,則球O的體積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的定義域為,求實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)若不等式有解,求實數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實數(shù),,滿足,證明:.19.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設.若在上恒成立,求實數(shù)的最大值.20.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)已知函數(shù)(),是的導數(shù).(1)當時,令,為的導數(shù).證明:在區(qū)間存在唯一的極小值點;(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.22.(10分)某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失?。畷x級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.024

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.2、A【解析】

可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.3、A【解析】

利用韋達定理可得,,結合可推出,再計算出,,從而推出①正確;再利用遞推公式依次計算數(shù)列中的各項,以此判斷②的正誤.【詳解】因為,是方程的兩個不等實數(shù)根,所以,,因為,所以,即當時,數(shù)列中的任一項都等于其前兩項之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項都是正整數(shù),故①正確;若數(shù)列存在某一項是5的倍數(shù),則此項個位數(shù)字應當為0或5,由,,依次計算可知,數(shù)列中各項的個位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個位數(shù)字為0或5的項,故②錯誤;故選:A.【點睛】本題主要考查數(shù)列遞推公式的推導,考查數(shù)列性質(zhì)的應用,考查學生的綜合分析以及計算能力.4、C【解析】

根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學生所占的比例,可判斷③的正誤.綜合得出結論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總人數(shù)為,,故超過的大學生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關命題真假的判斷,計算出相應的頻數(shù)與頻率是關鍵,考查數(shù)據(jù)處理能力,屬于基礎題.5、A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當,,退出循環(huán),輸出結果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結果為,故選:A.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結果,屬于基礎題目.6、A【解析】

由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎題.7、C【解析】

假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.8、D【解析】

根據(jù)集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.9、C【解析】

根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.10、A【解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關鍵.11、C【解析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結合的思想和運算求解的能力,屬于基礎題.12、C【解析】

建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。14、2【解析】

直接根據(jù)點到直線的距離公式即可求出?!驹斀狻恳罁?jù)點到直線的距離公式,點到直線的距離為。【點睛】本題主要考查點到直線的距離公式的應用。15、【解析】

根據(jù)球的表面積求得球的半徑,設球心到四棱錐底面的距離為,求得四棱錐的表達式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當且僅當時等號成立.故答案為:【點睛】本小題主要考查球的表面積有關計算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.16、【解析】

可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:【點睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)分類討論,去掉絕對值,化為與之等價的三個不等式組,求得每個不等式組的解集,再取并集即可.(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,根據(jù)絕對值不等式的性質(zhì)求得最小值即可得到答案.【詳解】(1)不等式或或,解得或,即x>0,所以原不等式的解集為.(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,又,當且僅當時取等,只需最小值,即.所以實數(shù)a的取值范圍是.【點睛】本題考查絕對值不等式的解法,考查利用絕對值三角不等式求最值,屬基礎題.18、(1)(2)見解析【解析】

(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設,∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當且僅當時等號成立.∴,即.∵.當且僅當,,時等號成立.∴,即成立.【點睛】此題考查不等式的證明,注意定值乘變化的靈活應用,屬于較易題目.19、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解析】

(Ⅰ)求出函數(shù)的定義域以及導數(shù),利用導數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時,構造函數(shù),利用導數(shù)證明出在上恒成立;在時,經(jīng)過分析得出,然后構造函數(shù),利用導數(shù)證明出在上恒成立,由此得出,進而可得出實數(shù)的最大值.【詳解】(Ⅰ)函數(shù)的定義域為.當時,.令,解得(舍去),.當時,,所以,函數(shù)在上單調(diào)遞減;當時,,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當時,在上恒成立.(ii)若,構造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當,即時,函數(shù)在上單調(diào)遞減,,不合題意,,即.此時構造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實數(shù)的最大值為【點睛】本題考查利用導數(shù)求解函數(shù)的單調(diào)區(qū)間,同時也考查了利用導數(shù)研究函數(shù)不等式恒成立問題,本題的難點在于不斷構造新函數(shù)來求解,考查推理能力與運算求解能力,屬于難題.20、(1);(2)【解析】

(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.【點睛】本題考查法求數(shù)列的通項公式,考查裂項求和,是基礎題.21、(1)見解析;(2)【解析】

(1)設,,注意到在上單增,再利用零點存在性定理即可解決;(2)函數(shù)在上單調(diào)遞減,則在恒成立,即在上恒成立,構造函數(shù),求導討論的最值即可.【詳解】(1)由已知,,所以,設,,當時,單調(diào)遞增,而,,且在上圖象連續(xù)不斷.所以在上有唯一零點,當時,;當時,;∴在單調(diào)遞減,在單調(diào)遞增,故在區(qū)間上存在唯一的極小值點,即在區(qū)間上存在唯一的極小值點;(2)設,,,∴在單調(diào)遞增

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論