版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
合肥市第四十八中學2025屆高二數學第一學期期末質量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列關于斜二測畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④2.已知向量,若,則()A. B.5C.4 D.3.雙曲線的漸近線方程和離心率分別是A. B.C. D.4.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=15.某學校隨機抽取了部分學生,對他們每周使用手機的時間進行統(tǒng)計,得到如下的頻率分布直方圖.則下列說法:①;②若抽取100人,則平均用時13.75小時;③若從每周使用時間在,,三組內的學生中用分層抽樣的方法選取8人進行訪談,則應從使用時間在內的學生中選取的人數為3.其中正確的序號是()A.①② B.①③C.②③ D.①②③6.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或7.若正實數、滿足,且不等式有解,則實數取值范圍是()A.或 B.或C. D.8.已知方程表示焦點在軸上的橢圓,則實數的取值范圍是()A. B.C. D.9.定義在R上的函數與函數在上具有相同的單調性,則k的取值范圍是()A. B.C. D.10.已知實數,滿足,則的最小值是()A. B.C. D.11.若方程表示圓,則實數m的取值范圍為()A B.C. D.12.若指數函數(且)與三次函數的圖象恰好有兩個不同的交點,則實數的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準線方程是______14.已知圓和直線.(1)求直線l所經過的定點的坐標,并判斷直線與圓的位置關系;(2)求當k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.15.函數在處的切線與平行,則________.16.設是定義在上的可導函數,且滿足,則不等式解集為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨立的,成活率為p,設為成活棕櫚樹的株數,數學期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補種,求需要補種棕櫚樹的概率.18.(12分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標原點,過且不平行于坐標軸的動直線與有兩個交點,,線段的中點為.(1)求的標準方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由.19.(12分)設點P是曲線上的任意一點,k是該曲線在點P處的切線的斜率(1)求k的取值范圍;(2)求當k取最大值時,該曲線在點P處的切線方程20.(12分)在平面直角坐標系中,已知拋物線的焦點與橢圓的右焦點重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設是拋物線上一點,且,求點的坐標21.(12分)過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2)(1)求圓C的標準方程;(2)直線l過B點與圓C相切,求直線l的方程,并化為一般式22.(10分)如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.(1)求證:平面;(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據斜二側直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結論【詳解】由斜二測畫法規(guī)則知:三角形的直觀圖仍然是三角形,所以①正確;根據平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯誤;根據平行于x軸的長度不變,平行于y軸的長度減半知,正方形的直觀圖不再是正方形,所以④錯誤.故選:B.2、B【解析】根據向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B3、A【解析】先根據雙曲線的標準方程,求得其特征參數的值,再利用雙曲線漸近線方程公式和離心率定義分別計算即可.【詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【點睛】本題主要考查雙曲線的漸近線及離心率,屬于簡單題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據圓錐曲線的統(tǒng)一定義求解4、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯立方程組可得,所以雙曲線的方程為考點:雙曲線的標準方程及簡單的幾何性質5、B【解析】根據頻率分布直方圖中小矩形的面積和為1可求出,再求出頻率分布直方圖的平均值,即為抽取100人的平均值的估計值,再利用分層抽樣可確定出使用時間在內的學生中選取的人數為3.【詳解】,故①正確;根據頻率分布直方圖可估計出平均值為,所以估計抽取100人的平均用時13.75小時,②的說法太絕對,故②錯誤;每周使用時間在,,三組內的學生的比例為,用分層抽樣的方法選取8人進行訪談,則應從使用時間在內的學生中選取的人數為,故③正確.故選:B.6、D【解析】設圓心坐標,由點到直線距離公式可得或,進而求得答案【詳解】設圓心坐標,因為圓與直線相切,所以由點到直線的距離公式可得,解得或.因此圓的方程為或.【點睛】本題考查利用直線與圓的位置關系求圓的方程,屬于一般題7、A【解析】將代數式與相乘,展開后利用基本不等式可求得的最小值,可得出關于實數的不等式,解之即可.【詳解】因為正實數、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷8、D【解析】根據已知條件可得出關于實數的不等式組,由此可解得實數的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.9、B【解析】判定函數單調性,再利用導數結合函數在的單調性列式計算作答.【詳解】由函數得:,當且僅當時取“=”,則在R上單調遞減,于是得函數在上單調遞減,即,,即,而在上單調遞減,當時,,則,所以k的取值范圍是.故選:B10、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A11、D【解析】根據,解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實數m的取值范圍為.故選:D12、A【解析】分析可知直線與曲線在上的圖象有兩個交點,令可得出,令,問題轉化為直線與曲線有兩個交點,利用導數分析函數的單調性與極值,數形結合可得出實數的取值范圍.【詳解】當時,,,此時兩個函數的圖象無交點;當時,由得,可得,令,其中,則直線與曲線有兩個交點,,當時,,此時函數單調遞增,當時,,此時函數單調遞減,則,且當時,,作出直線與曲線如下圖所示:由圖可知,當時,即當時,指數函數(且)與三次函數的圖象恰好有兩個不同的交點.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得p=4,所以準線方程,填14、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質知,當直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標準方程為,圓心為,半徑為,而,所以點P在圓內,所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質知,當直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.15、2【解析】由得出的值.【詳解】因為函數在處的切線與平行所以,故故答案為:216、【解析】構造函數,結合題意求得,由此判斷出在上遞增,由此求解出不等式的解集.【詳解】令,,故函數在上單調遞增,不等式可化為,則,解得:【點睛】本小題主要考查構造函數法解不等式,考查化歸與轉化的數學思想方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),分布列見解析;(2).【解析】(1)根據二項分布知識即可求解;(2)將補種棕櫚樹的概率轉化為成活的概率,結合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補種棕櫚樹”為事件A,由(1)得,,所以需要補種棕櫚樹的概率為.18、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點及離心率,列方程組,再求解即得;(2)設出點A,B坐標并列出它們滿足的關系,利用點差法即可作答;(3)設直線的方程,聯立直線與橢圓的方程,借助韋達定理求得,,再結合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標準方程為;(2)設,,,,由(1)知,,兩式相減得,即,而弦的中點,則有,所以;(3)假定存在符合要求的點P,由(1)知,設直線的方程為,由得:,則,,于是得,從而得點,,因為等邊三角形,即有,,因此,,,從而得,整理得,無解,所以在y軸上不存在點,使得為等邊三角形.19、(1)(2)【解析】(1)先求導數再求最值即可求解答案;(2)由(1)確定切點,從而也確定的斜率就可以求切線.【小問1詳解】設,因為,所以,所以k的取值范圍為【小問2詳解】由(1)知,此時,即,所以此時曲線在點P處的切線方程為20、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點即為拋物線的焦點,即可求出答案.(3)由拋物線定義可求出點的坐標【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點為,故拋物線的焦點為.拋物線的方程為.【小問3詳解】設的坐標為,,解得,.故的坐標為.21、(1);(2)【解析】(1)設圓的標準方程為:,則分別代入原點和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,則分別討論斜率存在與否,運用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設圓C的標準方程為,則分別代入原點和,得到,解得則圓的標準方程為(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,當時,到的距離為2,不合題意,舍去;當斜率存在時,設,由直線與圓相切,得到,即有,解得,故直線,即為點睛:本題考查直線與圓位置關系,考查圓的方程的求法和直線與圓相切的條件,考查運算能力,屬于中檔題;圓的方程有一般形式與標準形式,在該題中利用待定系數法將其設為標準形式,列、解出方程組即可;當直線與圓相切時等價于圓心到直線的距離等于半徑,已知直線上一點寫出直線的方程需注意斜率不存在的情形.22、(1)見解析(2)存在,【解析】(1)連接交于點,由三角形中位線性質知,由線面平行判定定理證得結論;(2)以為原點建立空間直角坐標系,假設,可用表示出點坐標;根據二面角的向量求法可根據二面角的余弦值構造出關于的方程,從而解得結果.【詳解】(1)連接交于點,連接,四邊形為平行四邊形,為中點,又為中點,,平面,平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題33 流程題分析(解析版)
- 農產品電商平臺的品牌故事與傳播策略
- 2025年來賓貨運從業(yè)資格證怎么考
- 2025年太原經營性道路客貨運輸駕駛員從業(yè)資格考試
- 以創(chuàng)新為引擎的農業(yè)技術轉移與推廣策略
- 2025年海南貨運從業(yè)資格試題及答案大全
- 2025年拉薩貨運從業(yè)資格證模擬考試試題及答案解析
- 從工業(yè)3到工業(yè)4的制造與自動化歷程回顧
- 企業(yè)機械的預防性維護計劃與實踐
- 初中化學實驗操作基礎技能與高級應用培訓成果匯報
- 中考數學真題變式題庫
- FZ/T 91019-1998染整機械導布輥制造工藝規(guī)范
- FZ/T 52025-2012再生有色滌綸短纖維
- SHSG0522003 石油化工裝置工藝設計包(成套技術)內容規(guī)定
- FMEA-培訓教材-汽車fmea培訓課件
- 制造部年終總結報告課件
- 粵科版高中通用技術選修1:電子控制技術全套課件
- 知識產權法(英文) Intellectual Property Right Law課件
- 熱力管道焊接技術交底記錄大全
- 接地裝置安裝試驗記錄
- 各級醫(yī)院健康體檢中心基本標準(2019年版)
評論
0/150
提交評論