版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省郴州市2025屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,,則有()A. B.C. D.2.已知在直角坐標(biāo)系xOy中,點(diǎn)Q(4,0),O為坐標(biāo)原點(diǎn),直線l:上存在點(diǎn)P滿足.則實(shí)數(shù)m的取值范圍是()A. B.C. D.3.已知橢圓的離心率為,則()A. B.C. D.4.點(diǎn)分別為橢圓左右兩個(gè)焦點(diǎn),過的直線交橢圓與兩點(diǎn),則的周長為()A.32 B.16C.8 D.45.()A.-2 B.0C.2 D.36.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對(duì)立事件 B.與互斥C.與相等 D.7.的二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)是第()項(xiàng).A.6 B.5C.4和6 D.5和78.焦點(diǎn)坐標(biāo)為(1,0)拋物線的標(biāo)準(zhǔn)方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y9.下列說法正確的個(gè)數(shù)有()個(gè)①在中,若,則②是,,成等比數(shù)列的充要條件③直線是雙曲線的一條漸近線④函數(shù)的導(dǎo)函數(shù)是,若,則是函數(shù)的極值點(diǎn)A.0 B.1C.2 D.310.某雙曲線的一條漸近方程為,且焦點(diǎn)為,則該雙曲線的方程是()A. B.C. D.11.在數(shù)列中,若,則稱為“等方差數(shù)列”,下列對(duì)“等方差數(shù)列”的判斷,其中不正確的為()A.若是等方差數(shù)列,則是等差數(shù)列 B.若是等方差數(shù)列,則是等方差數(shù)列C.是等方差數(shù)列 D.若是等方差數(shù)列,則是等方差數(shù)列12.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實(shí)數(shù),求的最小值;(3)若,當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)b的值.14.若函數(shù)在x=1處的切線與直線y=kx平行,則實(shí)數(shù)k=___________.15.在空間四邊形ABCD中,AD=2,BC=2,E,F(xiàn)分別是AB,CD的中點(diǎn),EF=,則異面直線AD與BC所成角的大小為____.16.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為正項(xiàng)等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,數(shù)列滿足,證明:數(shù)列的前n項(xiàng)和18.(12分)已知函數(shù)在處取得極值(1)若對(duì)任意正實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍;(2)討論函數(shù)的零點(diǎn)個(gè)數(shù)19.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值20.(12分)已知函數(shù),.(1)若在單調(diào)遞增,求的取值范圍;(2)若,求證:.21.(12分)已知各項(xiàng)為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知圓:與直線:.(1)證明:直線過定點(diǎn),并求出其坐標(biāo);(2)當(dāng)時(shí),直線l與圓C交于A,B兩點(diǎn),求弦的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】對(duì)待比較的代數(shù)式進(jìn)行作差,利用不等式基本性質(zhì),即可判斷大小.【詳解】因?yàn)?,又,,故,則,即;因?yàn)椋?,,故,則;綜上所述:.故選:D.2、A【解析】根據(jù)給定直線設(shè)出點(diǎn)P的坐標(biāo),再借助列出關(guān)于的不等式,然后由不等式有解即可計(jì)算作答.【詳解】因點(diǎn)P在直線l:上,則設(shè),于是有,而,因此,,即,依題意,上述關(guān)于的一元二次不等式有實(shí)數(shù)解,從而有,解得,所以實(shí)數(shù)m的取值范圍是.故選:A3、D【解析】由離心率及橢圓參數(shù)關(guān)系可得,進(jìn)而可得.【詳解】因?yàn)?,則,所以.故選:D4、B【解析】由題意結(jié)合橢圓的定義可得,而的周長等于,從而可得答案【詳解】解:由得,由題意得,所以的周長等于,故選:B5、C【解析】根據(jù)定積分公式直接計(jì)算即可求得結(jié)果【詳解】由故選:C6、D【解析】利用互斥事件和對(duì)立事件的定義分析判斷即可【詳解】因?yàn)閽仈S兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對(duì)立,也不相等,,所以ABC錯(cuò)誤,D正確,故選:D7、A【解析】由二項(xiàng)展開的中間項(xiàng)或中間兩項(xiàng)二項(xiàng)式系數(shù)最大可得解.【詳解】因?yàn)槎?xiàng)式展開式一共11項(xiàng),其中中間項(xiàng)的二項(xiàng)式系數(shù)最大,易知當(dāng)r=5時(shí),最大,即二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的為第6項(xiàng).故選:A8、B【解析】由題意設(shè)拋物線方程為y2=2px(p>0),結(jié)合焦點(diǎn)坐標(biāo)求得p,則答案可求【詳解】由題意可設(shè)拋物線方程為y2=2px(p>0),由焦點(diǎn)坐標(biāo)為(1,0),得,即p=2∴拋物的標(biāo)準(zhǔn)方程是y2=4x故選B【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的幾何性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題9、B【解析】根據(jù)三角函數(shù)、等比數(shù)列、雙曲線和導(dǎo)數(shù)知識(shí)逐項(xiàng)分析即可求解.【詳解】①在中,則有,因,所以,又余弦函數(shù)在上單調(diào)遞減,所以,故①正確,②當(dāng)且時(shí),此時(shí),但是,,不成等比數(shù)列,故②錯(cuò)誤,③由雙曲線可得雙曲線的漸近線為,故③錯(cuò)誤,④“”是“是函數(shù)的極值點(diǎn)”的必要不充分條件,故④錯(cuò)誤.故選:B.10、D【解析】設(shè)雙曲線的方程為,利用焦點(diǎn)為求出的值即可.【詳解】因?yàn)殡p曲線的一條漸近方程為,且焦點(diǎn)為,所以可設(shè)雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.11、B【解析】根據(jù)等方差數(shù)列的定義逐一進(jìn)行判斷即可【詳解】選項(xiàng)A中,符合等差數(shù)列的定義,所以是等差數(shù)列,A正確;選項(xiàng)B中,不是常數(shù),所以不是等方差數(shù)列,選項(xiàng)B錯(cuò)誤;選項(xiàng)C中,,所以是等方差數(shù)列,C正確;選項(xiàng)D中,所以是等方差數(shù)列,D正確故選:B12、A【解析】根據(jù)題意可知該程序框圖顯示的算法函數(shù)為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數(shù)為,由,當(dāng)時(shí),,方程無解;當(dāng)時(shí),,解得,綜上,若輸出的,則輸入的.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(1),;(2);(3)【解析】(1)根據(jù)韋達(dá)定理解求得答案;(2)根據(jù)題意,,進(jìn)而化簡(jiǎn),然后結(jié)合基本不等式解得答案;(3)討論,和x=2三種情況,進(jìn)而分參轉(zhuǎn)化為求函數(shù)的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個(gè)根為,2,由韋達(dá)定理得,,故,.【小問2詳解】由題意得,,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).【小問3詳解】若,,不等式恒成立.當(dāng)時(shí),,此時(shí),即對(duì)于恒成立,單調(diào)遞減,此時(shí),,所以;當(dāng)時(shí),,此時(shí),即即對(duì)于恒成立,在單調(diào)遞減,此時(shí),所以;當(dāng)x=2時(shí),.綜上所述:.14、2【解析】由題可求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.15、【解析】由已知找到異面直線所成角的平面角,再運(yùn)用余弦定理可得答案.【詳解】解:設(shè)BD的中點(diǎn)為O,連接EO,F(xiàn)O,所以,則∠EOF(或其補(bǔ)角)就是異面直線AD,BC所成的角的平面角,又因?yàn)镋O=AD=1,F(xiàn)O=BC=,EF=.根據(jù)余弦定理得=-,所以∠EOF=150°,異面直線AD與BC所成角的大小為30°.故答案為:30°.16、.【解析】利用空間向量夾角公式進(jìn)行求解即可.【詳解】取CD的中點(diǎn)O,以O(shè)為原點(diǎn),以CD所在直線為x軸,以底面內(nèi)過點(diǎn)O且與CD垂直的直線為y軸,以過點(diǎn)O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)將已知條件用首項(xiàng)和公比表示,聯(lián)立方程組即可求解數(shù)列的通項(xiàng)公式,然后由對(duì)數(shù)的運(yùn)算性質(zhì)即可得數(shù)列的通項(xiàng)公式;(2)由(1)求出,然后利用裂項(xiàng)相消求和法求出數(shù)列的前n項(xiàng)和,即可證明.【小問1詳解】解:設(shè)等比數(shù)列的公比為,由題意,得,即,解得或(舍),又,所以,所以,;【小問2詳解】解:,所以,所以18、(1)(2)答案見解析.【解析】(1)根據(jù)極值點(diǎn)求出,再利用導(dǎo)數(shù)求出的最大值,將不等式恒成立化為最大值成立可求出結(jié)果;(2)利用導(dǎo)數(shù)求出函數(shù)的極大、極小值,結(jié)合函數(shù)的圖象分類討論可得結(jié)果.【小問1詳解】函數(shù)的定義域?yàn)?,因?yàn)?,且在處取得極值,所以,即,得,此時(shí),當(dāng)時(shí),,為增函數(shù);當(dāng)時(shí)。,為減函數(shù),所以在處取得極大值,也是最大值,最大值為,因?yàn)閷?duì)任意正實(shí)數(shù),恒成立,所以,得.【小問2詳解】,,由,得,由,得或,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),所以在時(shí)取得極大值為,在時(shí)取得極小值為,因?yàn)楫?dāng)大于0趨近于0時(shí),趨近于負(fù)無窮,當(dāng)趨近于正無窮時(shí),趨近于正無窮,所以當(dāng),即時(shí),有且只有一個(gè)零點(diǎn);當(dāng),即時(shí),有且只有兩個(gè)零點(diǎn);當(dāng),即時(shí),有且只有三個(gè)零點(diǎn);當(dāng),即時(shí),有且只有兩個(gè)零點(diǎn);當(dāng),即時(shí),有且只有一個(gè)零點(diǎn).綜上所述:當(dāng)或時(shí),有且只有一個(gè)零點(diǎn);當(dāng)或時(shí),有且只有兩個(gè)零點(diǎn);當(dāng)時(shí)有且只有三個(gè)零點(diǎn).19、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標(biāo)系,利用向量法求線面角.【小問1詳解】因?yàn)镼為AD的中點(diǎn),,所以,又因?yàn)槠矫娴酌鍭BCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標(biāo)系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點(diǎn)可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個(gè)法向量為,所以,所以直線PB與平面MQB所成角的正弦值為20、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調(diào)遞增,則在上恒成立,由求解.(2)由(1)的結(jié)論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因?yàn)楹瘮?shù)在上單調(diào)遞增,所以在上恒成立,則有在上恒成立,即.令函數(shù),,所以時(shí),,在上單調(diào)遞增,所以,所以有,即,因此.(2)由(1)可知當(dāng)時(shí),為增函數(shù),不妨取,則有在上單調(diào)遞增,所以,即有在上恒成立,令,則有,所以,所以,因此.【點(diǎn)睛】方法點(diǎn)睛:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的關(guān)鍵在于準(zhǔn)確判定導(dǎo)數(shù)的符號(hào),當(dāng)f(x)含參數(shù)時(shí),需依據(jù)參數(shù)取值對(duì)不等式解集的影響進(jìn)行分類討論.(2)若可導(dǎo)函數(shù)f(x)在指定的區(qū)間D上單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生系統(tǒng)平安建設(shè)活動(dòng)方案(3篇)
- 質(zhì)控小組職責(zé)模版(2篇)
- 施工人員管理制度(3篇)
- 二零二五年度建筑工程施工服務(wù)外包合同2篇
- 課題申報(bào)書:大語言模型驅(qū)動(dòng)三語教學(xué)的能動(dòng)性分析和應(yīng)用路徑研究
- 裝飾圖案課程設(shè)計(jì)理念
- 二零二五年度新能源設(shè)備技術(shù)出口服務(wù)協(xié)議3篇
- 2024年規(guī)范化勞務(wù)輸出協(xié)議模板
- 材料員崗位的具體職責(zé)說明范文(2篇)
- 課題申報(bào)書:大學(xué)生數(shù)字化生存境況及優(yōu)化路向研究
- 八大危險(xiǎn)作業(yè)安全培訓(xùn)考核試卷
- 老年焦慮癥的護(hù)理
- 2024年白山客運(yùn)從業(yè)資格證考試題庫
- 中國商貿(mào)文化商道
- 臨港新片區(qū)規(guī)劃介紹
- 2024年云南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 廢氣處理系統(tǒng)改造及廢水處理系統(tǒng)改造項(xiàng)目可行性研究報(bào)告
- 山東省濟(jì)寧市2023-2024學(xué)年高一上學(xué)期2月期末考試化學(xué)試題(解析版)
- xx公路與天然氣管道交叉方案安全專項(xiàng)評(píng)價(jià)報(bào)告
- 露營基地商業(yè)計(jì)劃書
- 2024年代持債權(quán)轉(zhuǎn)讓協(xié)議書模板
評(píng)論
0/150
提交評(píng)論