2025屆山東省濰坊新高二上數(shù)學期末調(diào)研試題含解析_第1頁
2025屆山東省濰坊新高二上數(shù)學期末調(diào)研試題含解析_第2頁
2025屆山東省濰坊新高二上數(shù)學期末調(diào)研試題含解析_第3頁
2025屆山東省濰坊新高二上數(shù)學期末調(diào)研試題含解析_第4頁
2025屆山東省濰坊新高二上數(shù)學期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省濰坊新高二上數(shù)學期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點到雙曲線的漸近線的距離是()A. B.C.1 D.2.等比數(shù)列滿足,,則()A.11 B.C.9 D.3.劉徽是一個偉大的數(shù)學家,他的杰作《九章算術注》和《海島算經(jīng)》是中國寶貴的數(shù)學遺產(chǎn),他所提出的割圓術可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術的第一步是求圓的內(nèi)接正六邊形的面積.若在圓內(nèi)隨機取一點,則此點取自該圓內(nèi)接正六邊形的概率是()A. B.C. D.4.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.45.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.6.數(shù)列中,,,.當時,則n等于()A.2016 B.2017C.2018 D.20197.音樂與數(shù)學有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼模玫健拔ⅰ?,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼?,得到“商”……依此?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列8.命題P:ax2+2x﹣1=0有實數(shù)根,若¬p是假命題,則實數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}9.在各項均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.7810.設平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.711.在區(qū)間上隨機取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.12.已知兩圓相交于兩點,,兩圓圓心都在直線上,則值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點,使得經(jīng)過這三個頂點的平面與直線垂直.這三個頂點可以是________14.如圖,長方體中,,,,,分別是,,的中點,則異面直線與所成角為__.15.在空間直角坐標系中,已知點A,若點P滿足,則_______16.已知命題恒成立;,若p,均為真,則實數(shù)a的取值范圍__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點.(1)求證:平面PBC;(2)在線段PD上是否存在一點M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.18.(12分)設圓的圓心為﹐直線l過點且與x軸不重合,直線l交圓于A,B兩點.過作的平行線交于點P.(1)求點P的軌跡方程;(2)設點P的軌跡為曲線E,直線l交E于M,N兩點,C在線段上運動,原點O關于C的對稱點為Q,求四邊形面積的取值范圍;19.(12分)已知等比數(shù)列中,,數(shù)列滿足,(1)求數(shù)列的通項公式;(2)求證:數(shù)列為等差數(shù)列,并求前項和的最大值20.(12分)已知內(nèi)角A,B,C的對邊分別為a,b,c,且B,A,C成等差數(shù)列.(1)求A的大??;(2)若,且的面積為,求的周長.21.(12分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點為線段的中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.22.(10分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先確定拋物線的焦點坐標,和雙曲線的漸近線方程,再由點到直線的距離公式即可求出結果.【詳解】因為拋物線的焦點坐標為,雙曲線的漸近線方程為,由點到直線的距離公式可得.故選:B2、B【解析】由已知結合等比數(shù)列的性質即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B3、B【解析】此點取自該圓內(nèi)接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內(nèi)接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點睛】此題考查幾何概率模型求解,關鍵在于準確求出正六邊形的面積和圓的面積.4、B【解析】將已知條件轉化為的形式,由此求得.【詳解】在等差數(shù)列中,設公差為d,由,,得,解得.故選:B5、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設,由圓心,得,∴時,,∴故選:C.6、B【解析】根據(jù)已知條件用逐差法求得的通項公式,再根據(jù)裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.7、C【解析】根據(jù)文化知識,分別求出相對應的頻率,即可判斷出結果【詳解】設“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點睛】本題考查等比數(shù)列的定義,考查學生的運算能力和轉換能力及思維能力,屬于基礎題8、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結合方程有實數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數(shù)根,當a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎題.9、D【解析】由等比數(shù)列的性質直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質可得:由,解得:;由可得:,所以.故選:D10、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C11、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D12、A【解析】由相交弦的性質,可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標,進而可得中點的坐標,代入直線方程可得;進而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得,則,故中點為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點睛】方法點睛:解答圓和圓的位置關系時,要注意利用平面幾何圓的知識來分析解答.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.點或點(填出其中一組即可)【解析】(1)以向量,,為基底分別表達出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點或點14、【解析】以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,2,,,1,,,,設異面直線與所成角為,,異面直線與所成角為.故答案為:.15、【解析】設,表示出,,根據(jù)即可得到方程組,解得、、,即可求出的坐標,即可得到的坐標,最后根據(jù)向量模的坐標表示計算可得;【詳解】解:設,所以,,因為,所以,所以,解得,即,所以,所以;故答案為:16、【解析】根據(jù)題意得到命題為真命題,為假命題,結合二次函數(shù)的圖象與性質,即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實數(shù)a的取值范圍為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在,且【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)設,利用直線與平面所成角的正弦值列方程,化簡求得.【小問1詳解】設是的中點,連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,,設平面的法向量為,則,故可設.,且平面,所以平面.【小問2詳解】,設,則,,,設直線與平面所成角為,則,,兩邊平方并化簡得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.18、(1)(2)【解析】(1)由得,,再由,可得的軌跡方程;(2)設四邊形的面積為,,設直線的方程為,代入橢圓方程,利用韋達定理代入,整理后再利用函數(shù)單調(diào)性可得答案.【小問1詳解】(1)圓的圓心為,因為,所以,因為,所以,又,且,,所以的軌跡方程為.【小問2詳解】設四邊形面積為,則,可設直線的方程為,代入橢圓方程化簡得,>0恒成立.設,則,=,令,則,在上單調(diào)遞增,,即四邊形面積的取值范圍.19、(1);(2)證明見解析,10.【解析】(1)設出等比數(shù)列的公比q,利用給定條件列出方程求出q值即得;(2)將給定等式變形成,再推理計算即可作答.【詳解】(1)設等比數(shù)列的公比為q,依題意,,而,解得,所以數(shù)列的通項公式為;(2)顯然,,由得:,所以數(shù)列是以為首項,公差為-1的等差數(shù)列,其通項為,于是得,由得,而,則數(shù)列前4項都為非負數(shù),從第5項起都是負數(shù),又,因此數(shù)列前4項和與前3項和相等并且最大,其值為,所以數(shù)列前項和的最大值是10.20、(1)(2)【解析】(1)由等差數(shù)列的性質結合內(nèi)角和定理得出A的大??;(2)先由余弦定理,結合,,得到的關系式,再由的面積為,得到的關系式,兩式聯(lián)立可求出,進而可確定結果.【小問1詳解】因為B,A,C成等差數(shù)列,所以,所以.【小問2詳解】因為,,由余弦定理可得:;又的面積為,所以,所以,所以,所以周長為.21、(1)證明見解析;(2).【解析】(1)取的中點,連接,,證明兩兩垂直,如圖建系,求出的坐標以及平面的一個法向量,證明結合面,即可求證;(2)求出的坐標以及平面的法向量,根據(jù)空間向量夾角公式計算即可求解.【小問1詳解】如圖:取的中點,連接,,因為是邊長為等邊三角形,是以為斜邊的等腰直角三角形,可得,,因為面面,面面,,面,所以平面,因為面,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論