2025屆山東省德州市躍華中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆山東省德州市躍華中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆山東省德州市躍華中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆山東省德州市躍華中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆山東省德州市躍華中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東省德州市躍華中學(xué)數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.2.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.43.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.454.的內(nèi)角的對邊分別為,若,則內(nèi)角()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.6.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.7.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.8.已知函數(shù),則下列結(jié)論中正確的是①函數(shù)的最小正周期為;②函數(shù)的圖象是軸對稱圖形;③函數(shù)的極大值為;④函數(shù)的最小值為.A.①③ B.②④C.②③ D.②③④9.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質(zhì)數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當(dāng)好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.10.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)的模為()A. B.4 C.2 D.11.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則12.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____14.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.15.滿足線性的約束條件的目標函數(shù)的最大值為________16.點在雙曲線的右支上,其左、右焦點分別為、,直線與以坐標原點為圓心、為半徑的圓相切于點,線段的垂直平分線恰好過點,則該雙曲線的漸近線的斜率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.18.(12分)設(shè)函數(shù).(1)當(dāng)時,解不等式;(2)若的解集為,,求證:.19.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.20.(12分)函數(shù),且恒成立.(1)求實數(shù)的集合;(2)當(dāng)時,判斷圖象與圖象的交點個數(shù),并證明.(參考數(shù)據(jù):)21.(12分)平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.22.(10分)為響應(yīng)“堅定文化自信,建設(shè)文化強國”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機抽取了120名學(xué)生做調(diào)查,統(tǒng)計結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認為喜歡閱讀中國古典文學(xué)與性別有關(guān)系?男生女生總計喜歡閱讀中國古典文學(xué)不喜歡閱讀中國古典文學(xué)總計(2)為做好文化建設(shè)引領(lǐng),實驗組把該校作為試點,和該校的學(xué)生進行中國古典文學(xué)閱讀交流.實驗人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.2、D【解析】

模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當(dāng)時,,此時不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結(jié)論.3、B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎(chǔ)題.4、C【解析】

由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.5、B【解析】

列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當(dāng),時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.6、B【解析】由題意可得c=,設(shè)右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當(dāng)和大于兩定點間的距離時,軌跡是橢圓,當(dāng)和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當(dāng)和小于兩定點間的距離時,軌跡不存在.7、D【解析】

利用復(fù)數(shù)的除法運算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點睛】本題主要考查了復(fù)數(shù)的除法運算,其中解答中熟記復(fù)數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.8、D【解析】

因為,所以①不正確;因為,所以,,所以,所以函數(shù)的圖象是軸對稱圖形,②正確;易知函數(shù)的最小正周期為,因為函數(shù)的圖象關(guān)于直線對稱,所以只需研究函數(shù)在上的極大值與最小值即可.當(dāng)時,,且,令,得,可知函數(shù)在處取得極大值為,③正確;因為,所以,所以函數(shù)的最小值為,④正確.故選D.9、A【解析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.10、D【解析】

由復(fù)數(shù)的綜合運算求出,再寫出其共軛復(fù)數(shù),然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復(fù)數(shù)的運算,考查共軛復(fù)數(shù)與模的定義,屬于基礎(chǔ)題.11、D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.12、C【解析】

先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當(dāng)情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.14、【解析】

設(shè)是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.15、1【解析】

作出不等式組表示的平面區(qū)域,將直線進行平移,利用的幾何意義,可求出目標函數(shù)的最大值?!驹斀狻坑?,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點時,截距最小,此時取得最大值。由,解得,代入直線,得?!军c睛】本題主要考查簡單的線性規(guī)劃問題的解法——平移法。16、【解析】如圖,是切點,是的中點,因為,所以,又,所以,,又,根據(jù)雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點,點到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點,則點到曲線的圓心的距離.∵,∴當(dāng)時,d有最大值.又∵P,Q分別為曲線,曲線上動點,∴的最大值為.18、(1);(2)見解析.【解析】

(1)當(dāng)時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結(jié)論.【詳解】(1)當(dāng)時,不等式為,且.當(dāng)時,由得,解得,此時;當(dāng)時,由得,該不等式不成立,此時;當(dāng)時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得,,,,,當(dāng)且僅當(dāng),時取等號,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.19、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實數(shù)a的取值范圍為試題解析:(I)當(dāng)時,化為,當(dāng)時,不等式化為,無解;當(dāng)時,不等式化為,解得;當(dāng)時,不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為20、(1);(2)2個,證明見解析【解析】

(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導(dǎo)數(shù)討論此函數(shù)零點的個數(shù).【詳解】(1)的定義域為,因為,1°當(dāng)時,在上單調(diào)遞減,時,使得,與條件矛盾;2°當(dāng)時,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉(zhuǎn)化為方程實根個數(shù)問題,當(dāng)時,圖象與圖象有且僅有2個交點,理由如下:由,即,令,因為,所以是的一根;,1°當(dāng)時,,所以在上單調(diào)遞減,,即在上無實根;2°當(dāng)時,,則在上單調(diào)遞遞增,又,所以在上有唯一實根,且滿足,①當(dāng)時,在上單調(diào)遞減,此時在上無實根;②當(dāng)時,在上單調(diào)遞增,,故在上有唯一實根.3°當(dāng)時,由(1)知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論