版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟南市市中區(qū)實驗中學2025屆高二上數(shù)學期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.南宋數(shù)學家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個球,第二層有3個球,第三層有6個球,…,則第十層球的個數(shù)為()A.45 B.55C.90 D.1102.已知命題,,則A., B.,C., D.,3.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°4.是首項和公差均為3的等差數(shù)列,如果,則n等于()A.671 B.672C.673 D.6745.已知數(shù)列中,,則()A. B.C. D.6.已知點到直線:的距離為1,則等于()A. B.C. D.7.已知向量,,且,則的值為()A. B.C.或 D.或8.下列命題錯誤的是()A.命題“若,則”的逆否命題為“若,則”B.命題“若,則”的否命題為“若,則”C.若命題p:或;命題q:或,則是的必要不充分條件D.“”是“”的充分不必要條件9.已知點,,直線與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.10.已知圓O的半徑為5,,過點P的2021條弦的長度組成一個等差數(shù)列,最短弦長為,最長弦長為,則其公差為()A. B.C. D.11.已知橢圓的右焦點和右頂點分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.12.下列命題中,正確的是()A.若a>b,c>d,則ac>bd B.若ac>bc,則a<bC.若a>b,c>d,則a﹣c>b﹣d D.若,則a<b二、填空題:本題共4小題,每小題5分,共20分。13.已知點,拋物線的焦點為,點是拋物線上任意一點,則周長的最小值是__________.14.已知,是橢圓:的兩個焦點,點在上,則的最大值為________15.若拋物線的焦點與橢圓的右焦點重合,則實數(shù)m的值為______.16.已知,為雙曲線的左、右焦點,過作的垂線分別交雙曲線的左、右兩支于B,C兩點(如圖).若,則雙曲線的漸近線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線的一條漸近線方程為,且雙曲線C過點.(1)求雙曲線C的標準方程;(2)過點M的直線與雙曲線C的左右支分別交于A、B兩點,是否存在直線AB,使得成立,若存在,求出直線AB的方程;若不存在,請說明理由.18.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分19.(12分)已知圓C的圓心在直線上,且過點.(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,且,求m的值.20.(12分)已知a>0,b>0,a+b=1,求證:.21.(12分)已知函數(shù).(1)若與在處有相同的切線,求實數(shù)的取值;(2)若時,方程在上有兩個不同的根,求實數(shù)的取值范圍.22.(10分)已知直線過點,且其傾斜角是直線的傾斜角的(1)求直線的方程;(2)若直線與直線平行,且點到直線的距離是,求直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達出來,第層有個球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個球;第二層有個球;第三層有個球,則根據(jù)規(guī)律可知:第層有個球設第層的小球個數(shù)為,則有:故第十層球的個數(shù)為:故選:2、A【解析】根據(jù)全稱命題與特稱命題互為否定的關系,即可求解,得到答案【詳解】由題意,根據(jù)全稱命題與特稱命題的關系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關系是解答的關鍵,著重考查了推理與運算能力,屬于基礎題3、B【解析】根據(jù)三棱柱的特征補全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B4、D【解析】根據(jù)題意,求得數(shù)列的通項公式,代入數(shù)據(jù),即可得答案.【詳解】因為數(shù)列為等差數(shù)列,所以,令,解得.故選:D5、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.6、D【解析】利用點到直線的距離公式,即可求得參數(shù)的值.【詳解】因為點到直線:的距離為1,故可得,整理得,解得.故選:.7、C【解析】根據(jù)空間向量平行的性質得,代入數(shù)值解方程組即可.【詳解】因為,所以,所以,所以,解得或.故選:C.8、C【解析】根據(jù)逆否命題的定義可判斷A;根據(jù)否命題的定義可判斷B;求出、,根據(jù)充分條件和必要條件的概念可以判斷C;解出不等式,根據(jù)充分條件和必要條件的概念可判斷D.【詳解】命題“若,則”的逆否命題為“若,則”,故A正確;命題“若,則”的否命題為“若,則”,故B正確;若命題p:或;命題q:或,則:-1≤x≤1是:-2≤x≤1的充分不必要條件,故C錯誤;或x<1,故“”是“”的充分不必要條件,故D正確.故選:C.9、B【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,作出圖象如圖所示:,,若直線與線段相交,則或,所以實數(shù)的取值范圍是或,故選:B10、B【解析】可得過點P的最長弦長為直徑,最短弦長為過點P的與垂直的弦,分別求出即可得出公差.【詳解】可得過點P的最長弦長為直徑,,最短弦長為過點P的與垂直的弦,,公差.故選:B.11、B【解析】根據(jù)橢圓方程及其性質有,求解即可.【詳解】由題設,,整理得,可得.故選:B12、D【解析】運用不等式性質,結合特殊值法,對選項注逐一判斷正誤即可.【詳解】選項A中,若,時,則成立,否則,若,則,顯然錯誤,故選項A錯誤;選項B中,若,,則能推出,否則,若,則,顯然錯誤,故選項B錯誤;選項C中,若,則,顯然錯誤,故選項C錯誤;選項D中,若,顯然,由不等式性質知不等式兩邊同乘以一個正數(shù),不等式不變號,即.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用拋物線的定義結合圖形即得.【詳解】拋物線的焦點為,準線的方程為,過點作,垂足為,則,所以的周長為,當且僅當三點共線時等號成立.故答案為:.14、9【解析】根據(jù)橢圓的定義可得,結合基本不等式即可求得的最大值.【詳解】∵在橢圓上∴∴根據(jù)基本不等式可得,即,當且僅當時取等號.故答案為:9.15、【解析】分別求出橢圓和拋物線的焦點坐標即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點的坐標為,拋物線的焦點坐標為,∵拋物線的焦點與橢圓的右焦點重合,∴,即,故答案為:.16、【解析】根據(jù)雙曲線的定義先計算出,,注意到圖中漸近線,于是利用兩種不同的表示法列方程求解.【詳解】,則,由雙曲線的定義及在右支上,,又在左支上,則,則,在中,由余弦定理,,而圖中漸近線,于是,得,于是,不妨令,化簡得,解得,漸近線就為:.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,直線AB的方程為:或.【解析】(1)根據(jù)給定的漸近線方程及所過的點列式計算作答.(2)假定存在符合條件的直線AB,設出其方程,借助弦長公式計算判斷作答.【小問1詳解】依題意,,解得:,所以雙曲線C的標準方程是.【小問2詳解】假定存在直線AB,使得成立,顯然不垂直于y軸,否則,設直線:,由消去x并整理得:,因直線與雙曲線C的左右支分別交于A、B兩點,設,于是得,則有,即或,因此,,解得,所以存在直線AB,使得成立,此時,直線AB的方程為:或.18、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標,結合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設直線l的的斜率為,得到,結合題意列出方程,求得的值,即可求解;若選②,設所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯(lián)立方程組,解得,即,因為直線與直線垂直,所以直線的斜率為,所以過點且與直線垂直的直線方程為,即.【小問2詳解】解:因為點到直線的距離為,設所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,設直線l的的斜率為,可得直線的方程為,即,則直線與坐標軸的交點分別為,由,解得或,所以所求直線的方程為或.若選②,設所求圓的圓心為,半徑為,因為圓與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標為或,所以所求圓的方程為或.19、(1)(2)或【解析】(1)由已知設圓C的方程為,點代入計算即可得出結果.(2)由已知可得圓心C到直線的距離,利用點到直線的距離公式計算即可求得值.【小問1詳解】設圓心坐標為,半徑為,圓C的圓心在直線上,.則圓C的方程為,圓C過點,則,解得:則,圓C的圓心坐標為.則圓C的方程為;【小問2詳解】圓心C到直線的距離.則,解得或20、見解析【解析】將代入式子,得到,,進而進行化簡,最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當且僅當,即時取“=”21、(1)(2)【解析】(1)根據(jù)導數(shù)的幾何意義求得函數(shù)在處的切線方程,再由有相同的切線這一條件即可求解;(2)先分離,再研究函數(shù)的單調性,最后運用數(shù)形結合的思想求解即可.【小問1詳解】設公切線與的圖像切于點,f'
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合伙企業(yè)合同范文
- 2025年中國SPI錫膏厚度檢測儀行業(yè)市場前瞻與投資戰(zhàn)略規(guī)劃分析報告
- 2025電器采購合同書范本
- 中國磨齒鋸片項目投資可行性研究報告
- 2025年拖拉機鋼圈項目可行性研究報告
- 廣東省某服裝營銷網絡建設項目可行性研究報告
- 中國防水透氣膜行業(yè)發(fā)展前景預測及投資戰(zhàn)略研究報告
- 廣州市槎頭看守所監(jiān)區(qū)衛(wèi)生間改造工程可行性研究報告-廣州齊魯咨詢
- 燒漆行業(yè)深度研究報告
- 建筑零配件行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 安全生產培訓法律法規(guī)
- 廣東省廣州市2021-2022學年高二上學期期末五校聯(lián)考生物試題
- 2024年領導干部任前廉政知識考試測試題庫及答案
- 2023-2024學年浙江省寧波市鎮(zhèn)海區(qū)四年級(上)期末數(shù)學試卷
- 舞蹈演出編導排練合同模板
- 融資合作法律意見
- 污水泵站運營維護管理方案
- 湖北省武漢市洪山區(qū)2023-2024學年六年級上學期語文期末試卷(含答案)
- 2024下半年軟考信息安全工程師考試真題-及答案-打印
- 項目經理或管理招聘面試題與參考回答
- 中華人民共和國能源法
評論
0/150
提交評論