廣州黃埔區(qū)第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁
廣州黃埔區(qū)第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁
廣州黃埔區(qū)第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁
廣州黃埔區(qū)第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁
廣州黃埔區(qū)第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣州黃埔區(qū)第二中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,若不等式恒成立,則正數(shù)的最小值是()A.2 B.4C.6 D.82.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費(fèi)用不斷增加.已知水凈化到純凈度為時(shí)所需費(fèi)用單位:元為那么凈化到純凈度為時(shí)所需凈化費(fèi)用的瞬時(shí)變化率是()元/t.A. B.C. D.3.用3,4,5,6,7,9這6個(gè)數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),下列結(jié)論正確的有()A.在這樣的六位數(shù)中,奇數(shù)共有480個(gè)B.在這樣的六位數(shù)中,3、5、7、9相鄰的共有120個(gè)C.在這樣的六位數(shù)中,4,6不相鄰的共有504個(gè)D.在這樣六位數(shù)中,4個(gè)奇數(shù)從左到右按照從小到大排序的共有60個(gè)4.某超市收銀臺(tái)排隊(duì)等候付款的人數(shù)及其相應(yīng)概率如下:排隊(duì)人數(shù)01234概率0.10.16030.30.10.04則至少有兩人排隊(duì)的概率為()A.0.16 B.0.26C.0.56 D.0.745.已知數(shù)列中,,(),則等于()A. B.C. D.26.已知拋物線的焦點(diǎn)為F,直線l經(jīng)過點(diǎn)F交拋物線C于A,B兩點(diǎn),交拋物淺C的準(zhǔn)線于點(diǎn)P,若,則為()A.2 B.3C.4 D.67.平行六面體的各棱長(zhǎng)均相等,,,則異面直線與所成角的余弦值為()A. B.C. D.8.雙曲線的離心率為,焦點(diǎn)到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.9.已知橢圓的離心率為,直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),且,則橢圓的方程為A B.C. D.10.已知,是雙曲線的左、右焦點(diǎn),點(diǎn)A是的左頂點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓交的一條漸近線于、兩點(diǎn),以為直徑的圓與軸交于兩點(diǎn),且平分,則雙曲線的離心率為()A. B.2C. D.311.如圖,在正方體中,點(diǎn),分別是面對(duì)角線與的中點(diǎn),若,,,則()A. B.C. D.12.已知數(shù)列滿足,,則()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,的前項(xiàng)和為,則______.14.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.15.設(shè)數(shù)列滿足,則an=________16.對(duì)于實(shí)數(shù)表示不超過的最大整數(shù),如.已知數(shù)列的通項(xiàng)公式,前項(xiàng)和為,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),從下列兩個(gè)條件中選擇一個(gè)使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項(xiàng)為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項(xiàng)為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.18.(12分)如圖,四棱錐中,是邊長(zhǎng)為4的正三角形,為正方形,平面平面,、分別為、中點(diǎn).(1)證明:平面;(2)求直線EP與平面AEF所成角的正弦值.19.(12分)如圖,在棱長(zhǎng)為2的正方體中,,分別為線段,的中點(diǎn).(1)求點(diǎn)到平面的距離;(2)求平面與平面夾角的余弦值.20.(12分)在平面直角坐標(biāo)系中,橢圓的離心率為,且點(diǎn)在橢圓C上(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),試探究直線上是否存在定點(diǎn)Q,使得為定值.若存在,求出定點(diǎn)Q的坐標(biāo)及實(shí)數(shù)的值;若不存在,請(qǐng)說明理由21.(12分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(diǎn)(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積22.(10分)已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù))(1)求的解析式及單調(diào)遞減區(qū)間;(2)若函數(shù)無零點(diǎn),求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】,因?yàn)椴坏仁胶愠闪?,所以,即,解得,所?故選:B.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.2、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因?yàn)?,所以,則,故選:3、A【解析】A選項(xiàng),特殊位置優(yōu)先考慮求出這樣的六位數(shù)中,奇數(shù)個(gè)數(shù);B選項(xiàng),相鄰問題捆綁法求解;C選項(xiàng),不相鄰問題插空法求解;D選項(xiàng),定序問題使用倍縮法求解.【詳解】用3,4,5,6,7,9這6個(gè)數(shù)組成沒有重復(fù)數(shù)字的六位數(shù),個(gè)位為3,5,7,9中的一位,有種,其余五個(gè)數(shù)位上的數(shù)字進(jìn)行全排列,有種,綜上:在這樣的六位數(shù)中,奇數(shù)共有個(gè),A正確;在這樣的六位數(shù)中,3、5、7、9相鄰,將3、5、7、9捆綁,有種排法,再與4,6進(jìn)行全排列,故共有個(gè),B錯(cuò)誤;在這樣的六位數(shù)中,4,6不相鄰,先將3、5、7、9進(jìn)行全排列,再從五個(gè)位置中任選兩個(gè)將4,6排列,綜上共有個(gè),C錯(cuò)誤;在這樣的六位數(shù)中,4個(gè)奇數(shù)從左到右按照從小到大排序的共有個(gè),D錯(cuò)誤.故選:A4、D【解析】利用互斥事件概率計(jì)算公式直接求解【詳解】由某超市收銀臺(tái)排隊(duì)等候付款的人數(shù)及其相應(yīng)概率表,得:至少有兩人排隊(duì)的概率為:故選:D【點(diǎn)睛】本題考查概率的求法、互斥事件概率計(jì)算公式,考查運(yùn)算求解能力,是基礎(chǔ)題5、D【解析】由已知條件可得,,…,即是周期為3的數(shù)列,即可求.【詳解】由題設(shè),知:,,,…,∴是周期為3的數(shù)列,而的余數(shù)為1,∴.故選:D.6、C【解析】由題意可知設(shè),由可得,可求得,,根據(jù)模長(zhǎng)公式計(jì)算即可得出結(jié)果.【詳解】由題意可知,準(zhǔn)線方程為,設(shè),可知,,解得:,代入到拋物線方程可得:.,故選:C7、B【解析】利用基底向量表示出向量,,即可根據(jù)向量夾角公式求出【詳解】如圖所示:不妨設(shè)棱長(zhǎng)為1,,,所以==,,,即,故異面直線與所成角的余弦值為故選:B注意事項(xiàng):1.將答案寫在答題卡上2.本卷共10小題,共80分.8、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點(diǎn)為,漸近線方程為則又解得.則焦距為.選:D9、D【解析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【詳解】設(shè)直線與橢圓在第一象限的交點(diǎn)為,因?yàn)椋?,即,由可得,,故所求橢圓的方程為.故選D.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對(duì)基礎(chǔ)知識(shí)掌握的熟練程度,屬于中檔題.10、B【解析】由直徑所對(duì)圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因?yàn)?,所以又因?yàn)槠椒?,所以,由,得,所以,即所以故選:B11、D【解析】由空間向量運(yùn)算法則得,利用向量的線性運(yùn)算求出結(jié)果.【詳解】因?yàn)辄c(diǎn),分別是面對(duì)角線與的中點(diǎn),,,,所以故選:D.12、C【解析】結(jié)合遞推關(guān)系式依次求得的值.【詳解】因?yàn)?,,所以,得由,?故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析出當(dāng)為正奇數(shù)時(shí),,可求得的值,再分析出當(dāng)為正偶數(shù)時(shí),,可求得的值,進(jìn)而可求得的值.【詳解】由題知,當(dāng)為正奇數(shù)時(shí),,于是,,,,,所以.又因?yàn)楫?dāng)為正偶數(shù)時(shí),,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的解題關(guān)鍵在于分析出當(dāng)為正奇數(shù)時(shí),,以及當(dāng)為正偶數(shù)時(shí),,找出規(guī)律,結(jié)合并項(xiàng)求和法求出以及的值.14、【解析】對(duì)函數(shù)求導(dǎo),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求得切點(diǎn),由直線的點(diǎn)斜式方程可得所求切線的方程【詳解】函數(shù)的導(dǎo)數(shù)為∴,.曲線在點(diǎn)處的切線方程為,即.故答案為:.15、【解析】先由題意得時(shí),,再作差得,驗(yàn)證時(shí)也滿足【詳解】①當(dāng)時(shí),;當(dāng)時(shí),②①②得,當(dāng)也成立.即故答案為:16、54【解析】由,利用裂項(xiàng)相消法求得,再由的定義求解.【詳解】由已知可得:,,當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),;;所以.故答案為:54.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)所給的條件分別計(jì)算后即可判斷,再通過滿足題意的求出通項(xiàng);(2)由(1)可得,再通過錯(cuò)位相減法求和即可.【小問1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡(jiǎn)得.18、(1)見解析(2)【解析】(1)連接,證明,即可證明平面;(2)取的中點(diǎn),連接,由平面平面,得平面,建立如圖所示空間直角坐標(biāo)系,利用向量法即可求得答案.【小問1詳解】證明:連接,是正方形,是的中點(diǎn),是的中點(diǎn),是的中點(diǎn),,平面,平面,平面;【小問2詳解】取的中點(diǎn),連接,則,因?yàn)槭沁呴L(zhǎng)為4的正三角形,所以,因?yàn)槠矫嫫矫?,且平面平面,所以平面,建立如圖所示空間直角坐標(biāo)系,則,則,設(shè)平面的法向量,則有,可取,則,所以直線EP與平面AEF所成角的正弦值為.19、(1);(2).【解析】(1)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系.可根據(jù)題意寫出各個(gè)點(diǎn)的坐標(biāo),進(jìn)而求出平面的法向量和的坐標(biāo),點(diǎn)到平面的距離.計(jì)算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出來,平面與平面夾角的余弦值為,計(jì)算即可求出答案.【小問1詳解】以為原點(diǎn),為軸,為軸,為軸,建立如下圖所示的空間直角坐標(biāo)系.由于正方體的棱長(zhǎng)為2和,分別為線段,的中點(diǎn)知,.設(shè)平面的法向量為..則..故點(diǎn)到平面的距離.【小問2詳解】平面的法向量,平面與平面夾角的余弦值.20、(1)(2)存在,定點(diǎn)的坐標(biāo)為,實(shí)數(shù)的值為【解析】(1)由題意可得,再結(jié)合,可求出,從而可求得橢圓方程,(2)設(shè)在直線上存在定點(diǎn),當(dāng)直線斜率存在時(shí),設(shè)過點(diǎn)P的動(dòng)直線l為,設(shè),,將直線方程代入橢圓方程消去,利用根與系數(shù),再計(jì)算為常數(shù)可求出,從而可求得,當(dāng)直線斜率不存在時(shí),可求出兩點(diǎn)的坐標(biāo),從而可求得的值【小問1詳解】由題意知結(jié)合,可得,所以橢圓C的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè)在直線上存在定點(diǎn),使為定值,①當(dāng)直線斜率存在時(shí),設(shè)過點(diǎn)P的動(dòng)直線l為,設(shè),·由得,則,,所以為常數(shù)則,解之得,即定點(diǎn)為,則②當(dāng)直線斜率不存在時(shí),即動(dòng)直線方程為,不妨設(shè),,此時(shí)也成立所以,存在定點(diǎn)使為定值,即21、(1)證明見解析.(2)2.【解析】(1)取的中點(diǎn),連接,.運(yùn)用面面平行的判定和性質(zhì)可得證;(2)過點(diǎn)作,垂足為,連接,,設(shè)點(diǎn)到平面的距離為,根據(jù)棱錐的體積求得,再利用三棱錐的體積與三棱錐的體積相等,三棱錐的體積與三棱錐的體積相等,可求得答案.【小問1詳解】證明:如圖,取的中點(diǎn),連接,因?yàn)?,分別是棱,的中點(diǎn),所以,又平面,平面,所以平面因?yàn)椋?,分別是棱,的中點(diǎn),所以,又平面,平面,所以平面因?yàn)槠矫妫?,所以平面平面因?yàn)槠矫妫云矫妗拘?詳解】解:過點(diǎn)作,垂足為,連接,,則四邊形是正方形,從而因?yàn)椋?,則,從而直角梯形的面積設(shè)點(diǎn)到平面的距離為,則四棱錐的體積,解得因?yàn)槿忮F的體積與三棱錐的體積相等,所以三棱錐的體積因?yàn)槠矫妫匀忮F的體積與三棱錐的體積相等,所以三棱錐的體積為222、(1)單調(diào)減區(qū)間為和;(2)的取值范圍為:或【解析】(1)先求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件,可得,求得的解析式,可得導(dǎo)數(shù),令導(dǎo)數(shù)小于0,可得減區(qū)間;(2)先求得,要使函數(shù)無零點(diǎn),即要在內(nèi)無解,亦即要在內(nèi)無解.構(gòu)造函數(shù),對(duì)其求導(dǎo),然后對(duì)進(jìn)行分類討論,運(yùn)用單調(diào)性和函數(shù)零點(diǎn)存在性定理,即可得到的取值范圍.【詳解】(1),又由題意有:,故.此時(shí),,由或,所以函數(shù)的單調(diào)減區(qū)間為和.(2),且定義域?yàn)?,要函?shù)無零點(diǎn),即要在內(nèi)無解,亦即要在內(nèi)無解.構(gòu)造函數(shù).①當(dāng)時(shí),在內(nèi)恒成立,所以函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減.又,所以在內(nèi)無零點(diǎn),在內(nèi)也無零點(diǎn),故滿足條件;②當(dāng)時(shí),⑴若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減,在內(nèi)單調(diào)遞增.又,所以在內(nèi)無零點(diǎn);易知,而,故在內(nèi)有一個(gè)零點(diǎn),所以不滿足條件;⑵若,則函數(shù)在內(nèi)單調(diào)遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論