河北省石家莊市辛集市辛集中學2025屆高二上數(shù)學期末復習檢測試題含解析_第1頁
河北省石家莊市辛集市辛集中學2025屆高二上數(shù)學期末復習檢測試題含解析_第2頁
河北省石家莊市辛集市辛集中學2025屆高二上數(shù)學期末復習檢測試題含解析_第3頁
河北省石家莊市辛集市辛集中學2025屆高二上數(shù)學期末復習檢測試題含解析_第4頁
河北省石家莊市辛集市辛集中學2025屆高二上數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省石家莊市辛集市辛集中學2025屆高二上數(shù)學期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線,,點在拋物線上,記點到直線的距離為,則的最小值是()A.5 B.6C.7 D.82.已知中,內角所對的邊分別,若,,,則()A. B.C. D.3.已知等差數(shù)列滿足,,則()A. B.C. D.4.設,,若,其中是自然對數(shù)底,則()A. B.C. D.5.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.47.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.8.橢圓的一個焦點坐標為,則實數(shù)m的值為()A.2 B.4C. D.9.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則()A.16 B.C.14 D.10.等比數(shù)列,,,成公差不為0的等差數(shù)列,,則數(shù)列的前10項和()A. B.C. D.11.已知是空間的一個基底,,,,若四點共面.則實數(shù)的值為()A. B.C. D.12.設,,則與的等比中項為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,過F的直線l交拋物線C于AB兩點,且,則p的值為______14.某中學擬從4月16號至30號期間,選擇連續(xù)兩天舉行春季運動會,從已往的氣象記錄中隨機抽取一個年份,記錄天氣結果如下:日期161718192021222324252627282930天氣晴陰雨陰陰晴陰晴雨雨陰晴晴晴雨估計運動會期間不下雨的概率為_____________.15.已知、是空間內兩個單位向量,且,如果空間向量滿足,且,,則對于任意的實數(shù)、,的最小值為______16.已知一個圓錐的底面半徑為6,其體積為則該圓錐的側面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,是邊長為2的等邊三角形,,O是BC的中點,(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點,當時,二面角E-BD-C大小為60°,求t的值18.(12分)已知動點在橢圓:()上,,為橢圓左、右焦點.過點作軸的垂線,垂足為,點滿足,且點的軌跡是過點的圓(1)求橢圓方程;(2)過點,分別作平行直線和,設交橢圓于點,,交橢圓于點,,求四邊形的面積的最大值19.(12分)命題:函數(shù)有意義;命題:實數(shù)滿足.(1)當且為真時,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.20.(12分)如圖,在直三棱柱中,,分別是棱的中點,點在線段上.(1)當直線與平面所成角最大時,求線段的長度;(2)是否存在這樣的點,使平面與平面所成的二面角的余弦值為,若存在,試確定點的位置,若不存在,說明理由.21.(12分)已知平面內兩點,,動點P滿足(1)求動點P的軌跡方程;(2)過定點的直線l交動點P的軌跡于不同的兩點M,N,點M關于y軸對稱點為,求證直線過定點,并求出定點坐標22.(10分)已知圓M經過點F(2,0),且與直線x=-2相切.(1)求圓心M的軌跡C的方程;(2)過點(-1,0)的直線l與曲線C交于A,B兩點,若,求直線l的斜率k的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求出拋物線的焦點和準線,利用拋物線的定義將轉化為的距離,即可求解.【詳解】由已知得拋物線的焦點為,準線方程為,設點到準線的距離為,則,則由拋物線的定義可知∵,當點、、三點共線時等號成立,∴,故選:.2、B【解析】利用正弦定理可直接求得結果.【詳解】在中,由正弦定理得:.故選:B.3、D【解析】根據等差數(shù)列的通項公式求出公差,再結合即可得的值.【詳解】因為是等差數(shù)列,設公差為,所以,即,所以,所以,故選:D.4、A【解析】利用函數(shù)的單調性可得正確的選項.【詳解】令,因為均為,故為上的增函數(shù),由可得,故,故選:A.5、B【解析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據此即可判斷求解.【詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時,直線的斜率為負,滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.6、B【解析】由數(shù)量積的坐標運算求得,令,化為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案【詳解】解:根據題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B7、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A8、C【解析】由焦點坐標得到,求解即可.【詳解】根據焦點坐標可知,橢圓焦點在y軸上,所以有,解得故選:C.9、B【解析】由題意得到,根據等比數(shù)列的性質得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點,可得,根據等比數(shù)列的性質,可得則.故選:B.10、C【解析】先設等比數(shù)列的公比為,結合條件可知,由等差中項可知,利用等比數(shù)列的通項公式進行化簡求出,最后利用分組求和法,以及等比數(shù)列、等差數(shù)列的求和公式,即可求出數(shù)列的前10項和.【詳解】設等比數(shù)列的公比為,,,成公差不為0的等差數(shù)列,則,,都不相等,,且,,,,即,解得:或(舍去),,所以數(shù)列的前10項和:.故選:C.11、A【解析】由共面定理列式得,再根據對應系數(shù)相等計算.【詳解】因為四點共面,設存在有序數(shù)對使得,則,即,所以得.故選:A12、C【解析】利用等比中項的定義可求得結果.【詳解】由題意可知,與的等比中項為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據拋物線焦點弦性質求解,或聯(lián)立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設,,,則,∵,所以,,∴,當且僅當m=0時,取..故答案為:3.14、【解析】以每相鄰兩天為一個基本事件,求出試驗的基本事件數(shù),再求出兩天都不下雨的基本事件數(shù),利用古典概率公式計算作答.【詳解】依題意,以每相鄰兩天為一個基本事件,如16號與17號、17號與18號為不同的兩個基本事件,則從4月16號至30號期間,共有14個基本事件,它們等可能,其中相鄰兩天不下雨有16與17,19與20,20與21,21與22,22與23,26與27,27與28,28與29,共8個不同結果,所以運動會期間不下雨的概率為.故答案為:15、【解析】根據已知可設,,,根據已知條件求出、、的值,將向量用坐標加以表示,利用空間向量的模長公式可求得的最小值.【詳解】因為、是空間內兩個單位向量,且,所以,,因為,則,不妨設,,設,則,,解得,則,因為,可得,則,所以,,當且僅當時,即當時,等號成立,因此,對于任意的實數(shù)、,的最小值為.故答案為:.16、【解析】利用體積公式求出圓錐的高,進一步求出母線長,最終利用側面積公式求出答案.【詳解】∵∴∴∴.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)3【解析】(1)證得平面BCD,結合面面垂直判定定理即可得出結論;(2)建立空間直角坐標系,利用空間向量求二面角的公式可得,進而解方程即可求出結果.【小問1詳解】因為,O是BC的中點,所以,又因為,且,平面BCD,平面BCD,所以平面BCD,因為平面ABC,所以平面平面BCD【小問2詳解】連接OD,又因為是邊長為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O為坐標原點,OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標系設,則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因為A-BCD的體積為,所以,解得,即A(0,0,3),,∵,∴,設平面BCD的法向量為,,則,取平面BCD的法向量為,,,設是平面BDE的法向量,則,∴取平面BDE的法向量,解得或(舍)18、(1);(2)【解析】(1)設點和,由題意可得點的軌跡方程,將點Q的坐標代入T的方程計算出即可;(2)設的方程,和,聯(lián)立橢圓方程并消元得到關于y的一元二次方程,根據韋達定理得到,進而求出和,根據平行線間的距離公式可得與的距離,得出所求四邊形面積的表達式,結合換元法和基本不等式化簡求值即可.【詳解】解:(1)設點,,則點,,,∵,∴,∴,∵點在橢圓上,∴,即為點的軌跡方程又∵點的軌跡是過的圓,∴,解得,所以橢圓的方程為(2)由題意,可設的方程為,聯(lián)立方程,得設,,則,且,所以,同理,又與的距離為,所以,四邊形的面積為,令,則,且,當且僅當,即時等號成立所以,四邊形的面積最大值為19、(1);(2)【解析】(1)首先將命題,化簡,然后由為真可得,均為真,取交集即可求出實數(shù)的取值范圍;(2)將是的充分不必要條件轉化為是的必要不充分條件,進而將問題轉化為,從而求出實數(shù)的取值范圍【詳解】(1)若命題為真,則,解得,當時,命題,若命題為真,則,解得,所以,因為為真,所以,均為真,所以,所以,所以實數(shù)的取值范圍為(2)因為是的充分不必要條件,所以是的必要不充分條件,所以,所以或,所以,所以實數(shù)的取值范圍是【點睛】本題主要考查根據真值表判斷復合命題中的單個命題的真假,根據充分不必要條件求參數(shù)的取值范圍,同時考查一元二次不等式的解法,分式不等式的解法.第(2)問關鍵是將問題等價轉化為兩個集合間的真包含關系20、(1)(2)存在,A1P=【解析】(1)作出線面角,因為對邊為定值,所以鄰邊最小時線面角最大;(2)建立空間直角坐標系,由向量法求二面角列方程可得.【小問1詳解】直線PN與平面A1B1C1所成的角即為直線PN與平面ABC所成角,過P作,即PN與面ABC所成的角,因為PH為定值,所以當NH最小時線面角最大,因為當P為中點時,,此時NH最小,即PN與平面ABC所成角最大,此時.【小問2詳解】以AB,AC,AA1為x,y,z軸建立空間坐標系,則:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)設=,,,設平面PMN的法向量為,則,即,解得,平面AC1C的法向量為,.所以P點為A1B1的四等分點,且A1P=.21、(1)(2)證明見解析,定點坐標為【解析】(1)直接由斜率關系計算得到;(2)設出直線,聯(lián)立橢圓方程,韋達定理求出,再結合三點共線,求出參數(shù),得到過定點.小問1詳解】設動點,由已知有,整理得,所以動點的軌跡方程為;【小問2詳解】由已知條件可知直線和直線斜率一定存在,設直線方程為,,,則,由,可得,則,即為,,,因為直線過定點,所以三點共線,即,即,即,即,即得,整理,得,滿足,則直線方程為,恒過定點.【點睛】本題關鍵在于設出帶有兩個參數(shù)的直線的方程,聯(lián)立橢圓方程后,利用題干中的條件,解出一個參數(shù)或得到兩個參數(shù)之間的關系,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論