2025屆北京市昌平區(qū)昌平二中高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第1頁
2025屆北京市昌平區(qū)昌平二中高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第2頁
2025屆北京市昌平區(qū)昌平二中高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第3頁
2025屆北京市昌平區(qū)昌平二中高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第4頁
2025屆北京市昌平區(qū)昌平二中高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆北京市昌平區(qū)昌平二中高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的左、右焦點(diǎn)分別為,為軸上一點(diǎn),為正三角形,若,的中點(diǎn)恰好在橢圓上,則橢圓的離心率是()A. B.C. D.2.若點(diǎn)P是曲線上任意一點(diǎn),則點(diǎn)P到直線的最小距離為()A.0 B.C. D.3.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要4.已知是拋物線上的一點(diǎn),是拋物線的焦點(diǎn),若以為始邊,為終邊的角,則等于()A. B.C. D.5.已知數(shù)列滿足,則()A.32 B.C.1320 D.6.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.7.為比較甲、乙兩地某月時(shí)的氣溫狀況,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個(gè)位數(shù)字為葉).考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月時(shí)的氣溫的標(biāo)準(zhǔn)差;④甲地該月時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月時(shí)的氣溫的標(biāo)準(zhǔn)差.其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為()A.①③ B.①④C.②③ D.②④8.已知,是橢圓的兩焦點(diǎn),是橢圓上任一點(diǎn),從引外角平分線的垂線,垂足為,則點(diǎn)的軌跡為()A.圓 B.兩個(gè)圓C.橢圓 D.兩個(gè)橢圓9.概率論起源于賭博問題.法國著名數(shù)學(xué)家布萊爾帕斯卡遇到兩個(gè)賭徒向他提出的賭金分配問題:甲、乙兩賭徒約定先贏滿局者,可獲得全部賭金法郎,當(dāng)甲贏了局,乙贏了局,不再賭下去時(shí),賭金如何分配?假設(shè)每局兩人輸贏的概率各占一半,每局輸贏相互獨(dú)立,那么賭金分配比較合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎10.在等差數(shù)列中,已知,,則使數(shù)列的前n項(xiàng)和成立時(shí)n的最小值為()A.6 B.7C.9 D.1011.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在12.在下列四條拋物線中,焦點(diǎn)到準(zhǔn)線的距離為1的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點(diǎn),焦點(diǎn),均在軸上,且,的面積為,則的標(biāo)準(zhǔn)方程為______14.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2020>0,S2021<0,則當(dāng)n=_____________時(shí),Sn最大.15.已知一個(gè)圓錐的底面半徑為6,其體積為則該圓錐的側(cè)面積為________.16.某市有30000人參加階段性學(xué)業(yè)水平檢測(cè),檢測(cè)結(jié)束后的數(shù)學(xué)成績(jī)X服從正態(tài)分布,若,則成績(jī)?cè)?40分以上的大約為______人三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點(diǎn).(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.18.(12分)如圖,正四棱錐底面的四個(gè)頂點(diǎn)在球的同一個(gè)大圓上,點(diǎn)在球面上,且正四棱錐的體積為.(1)該正四棱錐的表面積的大??;(2)二面角的大小.(結(jié)果用反三角表示)19.(12分)為慶祝中國共產(chǎn)黨成立100周年,某校舉行了黨史知識(shí)競(jìng)賽,在必答題環(huán)節(jié),甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對(duì)的題數(shù)比乙多的概率.20.(12分)已知等比數(shù)列的公比,且,是的等差中項(xiàng).數(shù)列的前n項(xiàng)和為,滿足,.(1)求和的通項(xiàng)公式;(2)設(shè),求的前2n項(xiàng)和.21.(12分)已知數(shù)列的前項(xiàng)和為,且(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.22.(10分)已知圓,直線,直線l與圓C相交于P,Q兩點(diǎn)(1)求的最小值;(2)當(dāng)?shù)拿娣e最大時(shí),求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意得,取線段的中點(diǎn),則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因?yàn)闉檎切?,所以,取線段的中點(diǎn),連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點(diǎn)睛】求解離心率及其范圍的問題時(shí),解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解2、D【解析】由導(dǎo)數(shù)的幾何意義求得曲線上與直線平行的切線方程的切線坐標(biāo),求出切點(diǎn)到直線的距離即為所求最小距離【詳解】點(diǎn)是曲線上的任意一點(diǎn),設(shè),令,解得1或(舍去),,∴曲線上與直線平行的切線的切點(diǎn)為,點(diǎn)到直線的最小距離.故選:D.3、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因?yàn)榉匠瘫硎緳E圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點(diǎn)睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯(cuò)點(diǎn)警示:漏掉,本題屬于基礎(chǔ)題.4、D【解析】設(shè)點(diǎn),取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設(shè)點(diǎn),其中,則,,取,則,可得,因?yàn)椋傻?,解得,則,因此,.故選:D.5、A【解析】先令,求出,再當(dāng)時(shí),由,可得,然后兩式相比,求出,從而可求出,進(jìn)而可求得答案【詳解】當(dāng)時(shí),,當(dāng)時(shí),由,可得,兩式相除可得,所以,所以,故選:A6、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點(diǎn),易知且過中心點(diǎn),所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對(duì)稱性可得體對(duì)角線過中心點(diǎn),取,的中點(diǎn),易知且過中心點(diǎn),所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.7、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標(biāo)準(zhǔn)差即可【詳解】由莖葉圖知甲地該月時(shí)的平均氣溫為,標(biāo)準(zhǔn)差為由莖葉圖知乙地該月時(shí)的平均氣溫為,標(biāo)準(zhǔn)差為則甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫,故①正確,乙平均氣溫的標(biāo)準(zhǔn)差小于甲的標(biāo)準(zhǔn)差,故④正確,故正確的是①④,故選:B8、A【解析】設(shè)的延長線交的延長線于點(diǎn),由橢圓性質(zhì)推導(dǎo)出,由題意知是△的中位線,從而得到點(diǎn)的軌跡是以為圓心,以為半徑的圓【詳解】是焦點(diǎn)為、的橢圓上一點(diǎn)為的外角平分線,,設(shè)的延長線交的延長線于點(diǎn),如圖,,,,由題意知是△的中位線,,點(diǎn)的軌跡是以為圓心,以為半徑的圓故選:A9、A【解析】利用獨(dú)立事件計(jì)算出甲、乙各自贏得賭金的概率,由此可求得兩人各分配的金額.【詳解】甲贏得法郎的概率為,乙贏得法郎的概率為,因此,這法郎中分配給甲法郎,分配給乙法郎.故選:A.10、D【解析】根據(jù)等差數(shù)列的性質(zhì)及等差中項(xiàng)結(jié)合前項(xiàng)和公式求得,,從而得出結(jié)論.【詳解】,,,,,,,使數(shù)列的前n項(xiàng)和成立時(shí)n的最小值為10,故選:D.11、A【解析】應(yīng)用直線與圓的相離關(guān)系可得,再由余弦定理及三角形內(nèi)角的性質(zhì)即可判斷三角形的形狀.【詳解】由題設(shè),,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.12、D【解析】由題意可知,然后分析判斷即可【詳解】由題意知,即可滿足題意,故A,B,C錯(cuò)誤,D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用待定系數(shù)法列出關(guān)于的方程解出即可得結(jié)果.【詳解】設(shè)的標(biāo)準(zhǔn)方程為,則解得所以的標(biāo)準(zhǔn)方程為故答案為:.14、1010【解析】先由S2020>0,S2021<0,判斷出,,即可得到答案.【詳解】等差數(shù)列{an}的前n項(xiàng)和為,所以,因?yàn)?+2020=1010+1011,所以,所以.,所以,所以當(dāng)n=1010時(shí),Sn最大.故答案為:1010.15、【解析】利用體積公式求出圓錐的高,進(jìn)一步求出母線長,最終利用側(cè)面積公式求出答案.【詳解】∵∴∴∴.故答案為:.16、150【解析】根據(jù)考試的成績(jī)X服從正態(tài)分布.得到考試的成績(jī)X的正太密度曲線關(guān)于對(duì)稱,根據(jù),得到,根據(jù)頻率乘以樣本容量得到這個(gè)分?jǐn)?shù)段上的人數(shù)【詳解】由題意,考試的成績(jī)X服從正態(tài)分布考試的成績(jī)X的正太密度曲線關(guān)于對(duì)稱,,,,該市成績(jī)?cè)?40分以上的人數(shù)為故答案為:150三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點(diǎn),在中,、分別為和中點(diǎn),,又因平面平面,面,面,平面【小問2詳解】解:設(shè),以為坐標(biāo)原點(diǎn)如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因?yàn)槊媾c面的夾角余弦值為,所以,即,解得,18、(1)(2)【解析】(1)首先求出球的半徑,即可得到四棱錐的棱長,再根據(jù)錐體的表面積公式計(jì)算可得;(2)取中點(diǎn),聯(lián)結(jié),即可得到,從而得到為二面角的平面角,再利用余弦定理計(jì)算可得.【小問1詳解】解:設(shè)球的半徑為,則解得,所以所有棱長均為,因此【小問2詳解】解:取中點(diǎn),聯(lián)結(jié),因?yàn)榫鶠檎切?,因此,即為二面角的平面?,因此二面角的大小為.19、(1);(2).【解析】(1)把3道選擇題(2)設(shè),分別表示甲答對(duì)1道題,2道題的事件,,分別表示乙答對(duì)0道題,1道題的事件,分別求出它們的概率,甲答對(duì)的題數(shù)比乙多這個(gè)事件是,然后由相互獨(dú)立的事件和互斥事件的概率公式計(jì)算【詳解】解:(1)記3道選擇題則試驗(yàn)的樣本空間,.共有10個(gè)樣本點(diǎn),且每個(gè)樣本點(diǎn)是等可能發(fā)生的,所以這是一個(gè)古典概型.記事件A=“甲至少抽到1道填空題,.所以,,.所以,.因此,甲至少抽到1道填空題(2)設(shè),分別表示甲答對(duì)1道題,2道題的事件,分別表示乙答對(duì)0道題,1道題的事件,根據(jù)獨(dú)立性假定,得,.,.記事件B=“甲答對(duì)的題數(shù)比乙多”,則,且,,兩兩互斥,與,與,與分別相互獨(dú)立,所以..因此,甲答對(duì)的題數(shù)比乙多的概率為.20、(1),()(2)【解析】(1)等差數(shù)列和等比數(shù)列的基本量的計(jì)算,根據(jù)條件列出方程,并解方程即可;(2)數(shù)列根據(jù)的奇偶分段表示,奇數(shù)項(xiàng)通過乘公比錯(cuò)位相減法克求得前項(xiàng)和,偶數(shù)項(xiàng)則是通過裂項(xiàng)求和.【小問1詳解】由得,.又,,所以,即,解得或(舍去).所以(),當(dāng)時(shí),,當(dāng)時(shí),,經(jīng)檢驗(yàn),時(shí),適合上式,故().綜上可得:,【小問2詳解】由(1)可知,當(dāng)n為奇數(shù)時(shí),,當(dāng)n為偶數(shù)時(shí),,由題意,有①②①-②得:,則有:..故.21、(1)(2)【解析】(1)根據(jù),再結(jié)合等比數(shù)列的定義,即可求出結(jié)果;(2)由(1)可知,再利用錯(cuò)位相減法,即可求出結(jié)果.【小問1詳解】解:因?yàn)?,?dāng)時(shí),,解得當(dāng)時(shí),,所以,即.所以數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列.故.【小問2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論