版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
新疆石河子市第一中學2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線的左焦點,為右頂點,是雙曲線上的點,軸,若,則雙曲線的離心率為()A. B.C. D.2.數(shù)列中前項和滿足,若是遞增數(shù)列,則的取值范圍為()A. B.C. D.3.若復數(shù)滿足,則復平面內(nèi)表示的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d5.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A. B.C. D.6.“楊輝三角”是中國古代數(shù)學文化的瑰寶之一,最早在中國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn).如圖所示的楊輝三角中,第8行,第3個數(shù)是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.567.已知橢圓的左,右兩個焦點分別為,若橢圓C上存在一點A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.8.已知a,b為正實數(shù),且,則的最小值為()A.1 B.2C.4 D.69.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.10.在正方體中,P,Q兩點分別從點B和點出發(fā),以相同的速度在棱BA和上運動至點A和點,在運動過程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.11.若傾斜角為的直線過,兩點,則實數(shù)()A. B.C. D.12.已知中,內(nèi)角所對的邊分別,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)x,y滿足約束條件,則的最小值為______.14.已知點P是拋物線y2=2x上的動點,點P在y軸上的射影是M,點,則|的最小值是_________15.已知B(,0)是圓A:內(nèi)一點,點C是圓A上任意一點,線段BC的垂直平分線與AC相交于點D.則動點D的軌跡方程為_________________.16.將車行的30輛大巴車編號為01,02,…,30,采用系統(tǒng)抽樣方法抽取一個容量為3的樣本,且在某組隨機抽得的一個號碼為08,則剩下的兩個號碼依次是__________(按號碼從小到大排列)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當時,求函數(shù)在內(nèi)的零點個數(shù).18.(12分)設數(shù)列的前項和為,,且滿足,.(1)求數(shù)列的通項公式;(2)證明:對一切正整數(shù),有.19.(12分)如圖,在四棱錐中,底面為的中點(1)求證:平面;(2)若,求平面與平面的夾角大小20.(12分)已知橢圓的右焦點為F(,0),且點M(-,)在橢圓上.(1)求橢圓的方程;(2)直線l過點F,且與橢圓交于A,B兩點,過原點O作l的垂線,垂足為P,若,求λ的值.21.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)求數(shù)列的前項和.22.(10分)已知橢圓的離心率為,且點在橢圓上(1)求橢圓的標準方程;(2)若過定點的直線交橢圓于不同的兩點、(點在點、之間),且滿足,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)條件可得與,進而可得,,的關系,可得解.【詳解】由已知得,設點,由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.2、B【解析】由已知求得,再根據(jù)當時,,,可求得范圍.【詳解】解:因為,則,兩式相減得,因為是遞增數(shù)列,所以當時,,解得,又,,所以,解得,綜上得,故選:B.3、A【解析】根據(jù)復數(shù)的運算法則,求得,結合復數(shù)的幾何意義,即可求解.【詳解】由題意,復數(shù)滿足,可得,所以復數(shù)在復平面內(nèi)對應的點的坐標為,位于第一象限.故選:A.4、A【解析】結合不等式的性質(zhì)確定正確答案.【詳解】A選項,若且,則,所以A選項正確.B選項,若,則,所以B選項錯誤.C選項,如,但,所以C選項錯誤.D選項,如,但,所以D選項錯誤.故選:A5、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調(diào)遞增;導函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以單調(diào)遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.6、B【解析】由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),可得第8行,第3個數(shù)是為,即可求解【詳解】解:由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),故第8行,第3個數(shù)是為故選:B7、C【解析】根據(jù)題意可知當A為橢圓的上下頂點時,即可滿足橢圓C上存在一點A,使得,由此可得,解此不等式可得答案.【詳解】由橢圓的對稱性可知,當A為橢圓的上下頂點時,最大,故只需即可滿足題意,設O為坐標原點,則只需,即有,所以,解得,故選:C8、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因為a,b為正實數(shù),且,所以.當且僅當,即時取等號.故選:D9、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運用余弦定理得到、的關系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.10、C【解析】先過點作于點,連接,根據(jù)題意,得到即為直線與平面所成的角,設正方體棱長為,設,推出,進而可求出結果.【詳解】過點作于點,連接,因為四棱柱為正方體,所以易得平面,因此即為直線與平面所成的角,設正方體棱長為,設,則,,因為兩點分別從點和點出發(fā),以相同的速度在棱和上運動至點和點,所以,因此,所以,因為,所以,則,因此.故選:C.【點睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于常考題型.11、C【解析】根據(jù)直線的傾斜角和斜率的關系得到直線的斜率為,再根據(jù)兩點的斜率公式計算可得;【詳解】解:因為直線的傾斜角為,所以直線的斜率為,所以,解得;故選:C12、B【解析】利用正弦定理可直接求得結果.【詳解】在中,由正弦定理得:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作出該不等式表示的平面區(qū)域,由的幾何意義結合距離公式得出答案.【詳解】該不等式組表示的平面區(qū)域,如下圖所示過點作直線的垂線,垂足為因為表示原點與可行域中點之間的距離,所以的最小值為.故答案為:14、##【解析】由拋物線的定義可得,所以的最小值轉化為求的最小值,由圖可知的最小值為,從而可求得答案【詳解】拋物線y2=2x焦點,準線為,由拋物線的定義可得,所以,因為,,所以,所以,當且僅當三點共線且在線段上時,取得最小值,所以的最小值為,故答案為:15、【解析】利用橢圓的定義可得軌跡方程.【詳解】連接,由題意,,則,由橢圓的定義可得動點D的軌跡為橢圓,其焦點坐標為,長半軸長為2,故短半軸長為1,故軌跡方程為:.故答案為:.16、18,28【解析】根據(jù)等距抽樣的性質(zhì)確定剩下的兩個號碼即可.【詳解】由于從30輛大巴車中抽取3輛車,故分組間距為10,又第一組的號碼為08,所以其它兩個號碼依次是18,28故答案為:18,28.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當,在單調(diào)遞增;當,在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當時,,在單調(diào)遞增;當時,令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當,在單調(diào)遞增;當,在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】因為,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當時,,故在恒成立,即;因為,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時該函數(shù)單調(diào)遞增,令,解得,此時該函數(shù)單調(diào)遞減,又當時,,也即;令,則,令,解得,此時該函數(shù)單調(diào)遞減,令,解得,此時該函數(shù)單調(diào)遞增,又當時,,也即;又,故恒成立,則在恒成立,又,故當時,恒成立,則在上的零點個數(shù)是.【點睛】本題考察利用導數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點問題的處理;本題第二問處理的關鍵是通過分離參數(shù)和構造函數(shù),證明恒成立,屬綜合困難題.18、(1),;(2)證明見解析.【解析】(1)利用關系可得,根據(jù)等比數(shù)列的定義易知為等比數(shù)列,進而寫出的通項公式;(2)由,將不等式左側放縮,即可證結論.【小問1詳解】當時,,,兩式相減得:,整理可得:,而,所以是首項為2,公比為1的等比數(shù)列,故,即,.【小問2詳解】,..19、(1)證明見解析(2)【解析】(1)取中點,連結,證得,利用線面平行的判定定理,即可求解;(2)以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標系,利用平面和平面的法向量的夾角公式,即可求解【小問1詳解】取中點,連結,由,,則,又由平面,平面,所以平面.【小問2詳解】以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標系,可得,,,,,則,,設平面的一個法向量為,則,即,令,則又平面的法向量為;則,所以平面與平面所成的銳二面角為.20、(1)(2)【解析】(1)求得,的值即可確定橢圓方程;(2)分類討論直線的斜率存在和斜率不存在兩種情況即可確定為定值【小問1詳解】由題意知:根據(jù)橢圓的定義得:,即,所以橢圓的標準方程為【小問2詳解】當直線的斜率不存在時,的方程是此時,所以當直線的斜率存在時,設直線的方程為,,,,由可得顯然△,則,因為,所以所以,此時綜上所述,為定值21、(1);(2).【解析】(1)由,,可得求出,從而可得的通項公式;(2)由(1)可得,從而可得,然后利用裂項相消求和法可求得【詳解】解:(1)設等差數(shù)列的公差為,因為,.所以,化簡得,解得,所以,(2)由(1)可知,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版殯葬服務標準化協(xié)議模板版B版
- 2024年虛擬現(xiàn)實技術合伙開發(fā)合同協(xié)議3篇
- 2024年融資合作權益分配具體合同版B版
- 2024版中國石化設備采購合作協(xié)議一
- 2024校車運營安全管理服務承包合同
- 2024演出合作協(xié)議書演出策劃合同
- 精神科停電和突然停電的應急預案及程序
- 采購部員工技能培訓
- 福建省南平市文昌學校2021年高三語文模擬試題含解析
- 2024消防食品及飲料供應合同
- Unit 4 Plants around us C (教學設計)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 化工公司安全知識競賽題庫(共1000題)
- 市消化內(nèi)科質(zhì)量控制分中心業(yè)務指導工作總結
- 青島版(五年制)四年級下冊小學數(shù)學全冊導學案(學前預習單)
- 退學費和解協(xié)議書模板
- 課程評價與持續(xù)改進計劃
- 2024年版美國結直腸外科醫(yī)師協(xié)會《肛周膿腫、肛瘺、直腸陰道瘺的臨床實踐指南》解讀
- 2024至2030年中國對氯甲苯行業(yè)市場全景調(diào)研及發(fā)展趨勢分析報告
- 智能教育輔助系統(tǒng)運營服務合同
- 心功能分級及護理
- 事業(yè)單位招錄公共基礎知識(政治)模擬試卷10(共258題)
評論
0/150
提交評論