安徽省黃山市屯溪三中2025屆高二數(shù)學第一學期期末復習檢測試題含解析_第1頁
安徽省黃山市屯溪三中2025屆高二數(shù)學第一學期期末復習檢測試題含解析_第2頁
安徽省黃山市屯溪三中2025屆高二數(shù)學第一學期期末復習檢測試題含解析_第3頁
安徽省黃山市屯溪三中2025屆高二數(shù)學第一學期期末復習檢測試題含解析_第4頁
安徽省黃山市屯溪三中2025屆高二數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

安徽省黃山市屯溪三中2025屆高二數(shù)學第一學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,設函數(shù),若關于的不等式恒成立,則的取值范圍為()A. B.C. D.2.如圖,將邊長為4的正方形折成一個正四棱柱的側(cè)面,則異面直線AK和LM所成角的大小為()A.30° B.45°C.60° D.90°3.觀察:則第行的值為()A. B.C. D.4.從0,2中選一個數(shù)字,從1,3,5中選兩個數(shù)字,組成無重復數(shù)字的三位數(shù),其中偶數(shù)的個數(shù)為()A.24 B.18C.12 D.65.在棱長為1的正方體中,是線段上一個動點,則下列結(jié)論正確的有()A.不存在點使得異面直線與所成角為90°B.存在點使得異面直線與所成角為45°C.存在點使得二面角的平面角為45°D.當時,平面截正方體所得的截面面積為6.中國古代數(shù)學著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見首日行里數(shù),請公仔細算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里7.已知等差數(shù)列共有項,其中奇數(shù)項之和為290,偶數(shù)項之和為261,則的值為()A.30 B.29C.28 D.278.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A. B.C. D.9.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,則直線到原點的距離不超過1的概率是()A. B.C. D.10.已知函數(shù)是區(qū)間上的可導函數(shù),且導函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.與圓和圓都外切的圓的圓心在()A.一個圓上 B.一個橢圓上C.雙曲線的一支上 D.一條拋物線上12.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.7二、填空題:本題共4小題,每小題5分,共20分。13.若等比數(shù)列的前n項和為,且,則__________.14.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應該是__________15.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.16.圓與圓的公共弦長為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線,直線l與交于P、Q兩點(1)若點是雙曲線的一個焦點,求的漸近線方程;(2)若點P的坐標為,直線l的斜率等于1,且,求雙曲線的離心率18.(12分)某校高三年級進行了一次數(shù)學測試,全年級學生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區(qū)間內(nèi)的人數(shù)為36人,請估計該校高三學生的人數(shù)19.(12分)如圖,在棱長為的正方體中,為中點(1)求二面角的大??;(2)探究線段上是否存在點,使得平面?若存在,確定點的位置;若不存在,說明理由20.(12分)已知橢圓C:的左右焦點分別為,,點P是橢圓C上位于第二象限的任一點,直線l是的外角平分線,過左焦點作l的垂線,垂足為N,延長交直線于點M,(其中O為坐標原點),橢圓C的離心率為(1)求橢圓C的標準方程;(2)過右焦點的直線交橢圓C于A,B兩點,點T在線段AB上,且,點B關于原點的對稱點為R,求面積的取值范圍.21.(12分)某校從參加高二年級期末考試的學生中抽出60名學生,并統(tǒng)計了他們的化學成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求出這60名學生中化學成績低于50分的人數(shù);(2)估計高二年級這次考試化學學科及格率(60分以上為及格);(3)從化學成績不及格的學生中隨機調(diào)查1人,求他的成績低于50分的概率22.(10分)已知的離心率為,短軸長為2,F(xiàn)為右焦點(1)求橢圓的方程;(2)在x軸上是否存在一點M,使得過F的任意一條直線l與橢圓的兩個交點A,B,恒有,若存在求出M的坐標,若不存在,說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題設易知上恒成立,而在上,討論、,結(jié)合導數(shù)研究的最值,由不等式恒成立求的取值范圍.【詳解】由時,在上;由時,在上遞減,值域為;令且,則,當時,,即遞增,值域為,滿足題設;當時,在上,即遞減,在上,即遞增,此時值域為;當,即時存在,而在中,此時,不合題設;所以,此時要使的不等式恒成立,只需,即,可得;綜上,關于的不等式恒成立,則的取值范圍為.故選:D【點睛】關鍵點點睛:由題設易知上,只需在上恒有即可.2、D【解析】作出折疊后的正四棱錐,確定線面關系,從而把異面直線的夾角通過平移放到一個平面內(nèi)求得.【詳解】由題知,折疊后的正四棱錐如圖所示,易知K為的四等分點,L為的中點,M為的四等分點,,取的中點N,易證,則異面直線AK和LM所成角即直線AK和KN所成角,在中,,,故故選:D3、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B4、C【解析】根據(jù)題意,結(jié)合計數(shù)原理中的分步計算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無重復數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個數(shù)字為個位數(shù),有種可能,從1,3,5中選兩個數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個無重復數(shù)字的三位數(shù)為偶數(shù)的個數(shù)為.故選:C.5、D【解析】由正方體的性質(zhì)可將異面直線與所成的角可轉(zhuǎn)化為直線與所成角,而當為的中點時,可得,可判斷A;與或重合時,直線與所成的角最小可判斷B;當與重合時,二面角的平面角最小,通過計算可判斷C;過作,交于,交于點,由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計算即可判斷D.【詳解】異面直線與所成的角可轉(zhuǎn)化為直線與所成角,當為中點時,,此時與所成的角為90°,所以A錯誤;當與或重合時,直線與所成角最小,為60°,所以B錯誤;當與重合時,二面角的平面角最小,,所以,所以C錯誤;對于D,過作,交于,交于點,因為,所以、分別是、的中點,又,所以,四邊形即為平面截正方體所得的截面,因為,且,所以四邊形是等腰梯形,作交于點,所以,,所以梯形的面積為,所以D正確.故選:D.6、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C7、B【解析】由等差數(shù)列的求和公式與等差數(shù)列的性質(zhì)求解即可【詳解】奇數(shù)項共有項,其和為,∴偶數(shù)項共有n項,其和為,∴故選:B8、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調(diào)遞增;導函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以單調(diào)遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.9、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點的距離不超過1,則所以當時,可以為5,6當時,可以為4,5,6當時,可以為4,5,6當時,可以為2,3,4,5,6當時,可以為1,2,3,4,5,6當時,可以為1,2,3,4,5,6滿足的共有25種結(jié)果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,共有種結(jié)果所以滿足條件的概率為故選:C10、A【解析】根據(jù)充分條件與必要條件的概念,由導函數(shù)的正負與函數(shù)單調(diào)性之間關系,即可得出結(jié)果.【詳解】因為函數(shù)是區(qū)間上的可導函數(shù),且導函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A11、C【解析】設動圓的半徑為,然后根據(jù)動圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點的軌跡是雙曲線的一支故選:C12、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因為,若時,可得,故,所以,化簡得,整理得,解得或,因為,解得,所以.故答案為:.14、1【解析】結(jié)合莖葉圖以及平均數(shù)列出方程,即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:1.15、##【解析】利用列舉法,結(jié)合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:16、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)題意可得,又因為且,解得,可得雙曲線方程,進而可得的漸近線方程(2)設直線的方程為:,,,聯(lián)立直線與雙曲線方程,可得關于的一元二次方程,由韋達定理可得,,再由兩點之間距離公式得,解得,進而由可求出,即可求得離心率.【小問1詳解】∵點是雙曲線的一個焦點,∴,又∵且,解得,∴雙曲線方程為,∴的漸近線方程為:;小問2詳解】設直線的方程為,且,,聯(lián)立,可得,則,∴,即,∴,解得或,即由可得或,故雙曲線的離心率或.18、(1)(2)人【解析】(1)由頻率分布直方圖的性質(zhì)求得,結(jié)合,即可求得的值;(2)由頻率分布直方圖求得落在區(qū)間內(nèi)的概率,進而求得該校高三年級的人數(shù)【小問1詳解】解:由頻率分布直方圖的性質(zhì),可得:,可得,又由,可得解得;【小問2詳解】解:由頻率分布直方圖可得,成績落在區(qū)間內(nèi)的概率為,則該校高三年級的人數(shù)為(人)19、(1)(2)點為線段上靠近點的三等分點【解析】(1)建立空間直角坐標系,分別寫出點的坐標,求出兩個平面的法向量代入公式求解即可;(2)假設存在,設,利用相等向量求出坐標,利用線面平行的向量法代入公式計算即可.【小問1詳解】如下圖所示,以為原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系,則,,,,,,.所以,設平面的法向量,所以,即,令,則,,所以,連接,因為,,,平面,平面,平面,所以平面,所以為平面的一個法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設在線段上存在點,使得平面,設,,,因為平面,所以,即所以,即解得所以在線段上存在點,使得平面,此時點為線段上靠近點的三等分點20、(1)(2)【解析】(1)根據(jù)題意可得到的值,結(jié)合橢圓的離心率,即可求得b,求得答案;(2)由可得,進一步推得,于是設直線方程和橢圓方程聯(lián)立,利用根與系數(shù)的關系,求得弦長,表示出三角形AOB的面積,利用換元法結(jié)合二次函數(shù)的性質(zhì)求其范圍.【小問1詳解】由題意可知:為的中點,為的中點,為的中位線,,,又,故,即,,又,,,橢圓的標準方程為;【小問2詳解】由題意可知,,,①當過的直線與軸垂直時,,,②當過的直線不與軸垂直時,可設,,直線方程為,聯(lián)立,可得:.,,,由弦長公式可知,到距離為,故,令,則原式變?yōu)椋?,原式變?yōu)楫敃r,故,由①②可知.【點睛】本題考查了橢圓方程的求解,以及直線和橢圓相交時的三角形的面積問題,考查學生的計算能力和數(shù)學素養(yǎng),解答的關鍵是計算三角形面積時要理清運算的思路,準確計算.21、(1)6人;(2)75%;(3).【解析】(1)由頻率分布直方圖可得化學成績低于50分的頻率為0.1,然后可求得人數(shù)為人;(2)根據(jù)頻率分布直方圖求分數(shù)在第三、四、五、六組的頻率之和即可;(3)結(jié)合圖形可得“成績低于50分”的人數(shù)是6人,成績在這組的人數(shù)是,由古典概型概率公式可得所求概率為試題解析:(1)因為各組的頻率和等于1,由頻率分布直方圖可得低于50分的頻率為:,所以低于分的人數(shù)為(人)(2)依題意可得成績60及以上的分數(shù)所在的第三、四、五、六組(低于50分的為第一組),其頻率之和為,故抽樣學生成績的及格率是,于是,可以估計這次考試化學學科及格率約為75%(3)由(1)知,“成績低于50分”的人數(shù)是6人,成績在這組的人數(shù)是(人),所以從成績不及格的學生中隨機調(diào)查1人,有15種選法,成績低于50分有6種選法,故所求概率為22、(1);(2)存在點M滿足條件,點M的坐標為.【解析】(1)根據(jù)給定條件直接計算出即可求解作答.(2)假定存在點,當直線l與x軸不重合時,設出l的方程,與橢圓C的方程聯(lián)立,借

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論