版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆天津市河北區(qū)數(shù)學高二上期末監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.2.設(shè)雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.3.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或4.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.5.定義運算:.已知,都是銳角,且,,則()A. B.C. D.6.己知命題;命題,則下列命題中為假命題的是()A. B.C. D.7.如圖,是對某位同學一學期次體育測試成績(單位:分)進行統(tǒng)計得到的散點圖,關(guān)于這位同學的成績分析,下列結(jié)論錯誤的是()A.該同學的體育測試成績總的趨勢是在逐步提高,且次測試成績的極差超過分B.該同學次測試成績的眾數(shù)是分C.該同學次測試成績的中位數(shù)是分D.該同學次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān)8.過拋物線()的焦點作斜率大于的直線交拋物線于,兩點(在的上方),且與準線交于點,若,則A. B.C. D.9.已知向量分別是直線的方向向量,若,則()A. B.C. D.10.已知為原點,點,以為直徑的圓的方程為()A. B.C. D.11.設(shè)函數(shù)在R上可導,則()A. B.C. D.以上都不對12.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?3二、填空題:本題共4小題,每小題5分,共20分。13.某中學擬從4月16號至30號期間,選擇連續(xù)兩天舉行春季運動會,從已往的氣象記錄中隨機抽取一個年份,記錄天氣結(jié)果如下:日期161718192021222324252627282930天氣晴陰雨陰陰晴陰晴雨雨陰晴晴晴雨估計運動會期間不下雨的概率為_____________.14.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點,,,,若,則_________15.在長方體中,若,,則異面直線與所成角的大小為______.16.狄利克雷是十九世紀德國杰出的數(shù)學家,對數(shù)論、數(shù)學分析和數(shù)學物理有突出貢獻.狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,橢圓C的左,右焦點分別為F1(﹣,0),F(xiàn)2(,0),且橢圓C過點(﹣).(1)求橢圓C的標準方程;(2)設(shè)過(0,﹣2)的直線l與橢圓C交于M,N兩點,O為坐標原點,若,求直線l的方程.18.(12分)已知函數(shù),(),(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值(2)當時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍19.(12分)已知圓:,點A是圓上一動點,點,點是線段的中點.(1)求點的軌跡方程;(2)直線過點且與點的軌跡交于A,兩點,若,求直線的方程.20.(12分)已知圓M的方程為.(1)寫出圓M的圓心坐標和半徑;(2)經(jīng)過點的直線l被圓M截得弦長為,求l的方程.21.(12分)如圖所示,在空間四邊形中,,分別為,的中點,,分別在,上,且.求證:(1)、、、四點共面;(2)與的交點在直線上22.(10分)某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權(quán)意識,組織方從參加活動的群眾中隨機抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(shù)(結(jié)果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取2名群眾組成維權(quán)志愿者服務隊,求恰有一名女性的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設(shè)為:則準線方程為:解得:則拋物線的標準方程為:故選:D2、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.3、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.4、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當時,,,當時,,,綜上所述,的取值范圍為,故選:A5、B【解析】,只需求出與的正、余弦值即可,用平方關(guān)系時注意角的范圍.【詳解】解:因為,都是銳角,所以,,因為,所以,即,,所以,,因為,所有,故選:B.【點睛】信息給予題,已知三角函數(shù)值求三角函數(shù)值,考查根據(jù)三角函數(shù)的恒等變換求值,基礎(chǔ)題.6、A【解析】根據(jù)或且非命題的真假進行判斷即可.【詳解】當,故命題是真命題,,故命題是真命題.因此可知是假命題,是真命題,,均為真命題.故選:A7、C【解析】根據(jù)給定的散點圖,逐一分析各個選項即可判斷作答.【詳解】對于A,由散點圖知,8次測試成績總體是依次增大,極差為,A正確;對于B,散點圖中8個數(shù)據(jù)的眾數(shù)是48,B正確;對于C,散點圖中的8個數(shù)由小到大排列,最中間兩個數(shù)都是48,則次測試成績的中位數(shù)是分,C不正確;對于D,散點圖中8個點落在某條斜向上的直線附近,則次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C8、A【解析】分別過作準線的垂線,垂足分別為,設(shè),則,,故選A.9、C【解析】由題意,得,由此可求出答案【詳解】解:∵,且分別是直線的方向向量,∴,∴,∴,故選:C【點睛】本題主要考查向量共線的坐標表示,屬于基礎(chǔ)題10、A【解析】求圓的圓心和半徑,根據(jù)圓的標準方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒11、B【解析】根據(jù)極限的定義計算【詳解】由題意故選:B12、B【解析】先畫出可行域,由,得,作出直線,過點時,取得最大值,求出點的坐標代入目標函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點時,取得最大值,由,得,即,所以的最大值為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以每相鄰兩天為一個基本事件,求出試驗的基本事件數(shù),再求出兩天都不下雨的基本事件數(shù),利用古典概率公式計算作答.【詳解】依題意,以每相鄰兩天為一個基本事件,如16號與17號、17號與18號為不同的兩個基本事件,則從4月16號至30號期間,共有14個基本事件,它們等可能,其中相鄰兩天不下雨有16與17,19與20,20與21,21與22,22與23,26與27,27與28,28與29,共8個不同結(jié)果,所以運動會期間不下雨的概率為.故答案為:14、【解析】建立空間直角坐標系,利用空間向量可以解決問題.【詳解】設(shè),如下圖所示,建立空間直角坐標系,,,,,,則所以又因為所以故答案為:15、【解析】畫出長方體,再將異面直線與利用平行線轉(zhuǎn)移到一個三角形內(nèi)求解角度即可.【詳解】畫出長方體可得異面直線與所成角為與之間的夾角,連接.則因為,則,又,故,又,故為等腰直角三角形,故,即異面直線與所成角的大小為故答案為【點睛】本題主要考查立體幾何中異面直線的角度問題,一般的處理方法是將異面直線經(jīng)過平行線的轉(zhuǎn)換構(gòu)成三角形求角度,屬于基礎(chǔ)題型.16、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】(1)設(shè)標準方程代入點的坐標,解方程組得解.(2)設(shè)直線方程代入橢圓方程消元,韋達定理整體思想,可得直線斜率得解.【小問1詳解】因為橢圓C的焦點為,可設(shè)橢圓C的方程為,又點在橢圓C上,所以,解得,因此,橢圓C的方程為;【小問2詳解】當直線的斜率不存在時,顯然不滿足題意;當直線的斜率存在時,設(shè)直線的方程為,設(shè),,因為,所以,因為,,所以,所以,①聯(lián)立方程,消去得,則,代入①,得,解得,經(jīng)檢驗,此時直線與橢圓相交,所以直線l的方程是或.18、【解析】(1)求a,b的值,根據(jù)曲線與曲線在它們的交點處具有公共切線,可知切點處的函數(shù)值相等,切點處的斜率相等,列方程組,即可求出的值;(2)求k的取值范圍.,先求出的解析式,由已知時,設(shè),求導函數(shù),確定函數(shù)的極值點,進而可得時,函數(shù)在區(qū)間上的最大值為;時,函數(shù)在在區(qū)間上的最大值小于,由此可得結(jié)論試題解析:(1),因為曲線與曲線在它們的交點處具有公共切線,所以,所以;(2)當時,,,,令,則,令,得,所以在與上單調(diào)遞增,在上單調(diào)遞減,其中為極大值,所以如果在區(qū)間最大值為,即區(qū)間包含極大值點,所以考點:導數(shù)的幾何意義,函數(shù)的單調(diào)性與最值19、(1);(2)x=1或y=1.【解析】(1)設(shè)線段中點為,點,用x,y表示,代入方程即可;(2)分l斜率存在和不存在進行討論,根據(jù)弦長求出l方程.【小問1詳解】設(shè)線段中點為,點,,,,,,即點C的軌跡方程為.【小問2詳解】直線l的斜率不存在時,l為x=1,代入得,則弦長滿足題意;直線l斜率存在時,設(shè)直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.20、(1)圓心坐標為,半徑為2(2)或【解析】(1)求得圓的標準方程,從而求得圓心和半徑.(2)根據(jù)直線的斜率存在和不存在進行分類討論,由此求得的方程.【小問1詳解】圓的標準方程為:.所以圓M的圓心坐標為,半徑為2.【小問2詳解】因為圓M半徑為2,直線l被圓M截得弦長為,由垂徑定理可知M到直線距離為1.當l不垂直于軸時,設(shè),即,則.解得,于是l的方程為,即.當l垂直于軸時,到點M的距離為1.綜上,l的方程為,或.21、(1)證明見解析;(2)證明見解析【解析】(1)由平行關(guān)系轉(zhuǎn)化,可得,即可證明四點共面;(2)由條件證明與的交點既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點,∴,∴,∴,,,四點共面(2)∵,不是,的中點,∴,且,故為梯形∴與必相交,設(shè)交點為,∴平面,平面,∴平面,且平面,∴,即與的交點在直線上22、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;(2)求出概率對應的值即為中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療保險公司信息安全政策
- 旅游行業(yè)安全管理三年行動計劃方案
- 水泥道路改建施工方案
- 2024-2030年中國艾灸養(yǎng)生儀行業(yè)需求潛力及競爭態(tài)勢研究報告
- 2024-2030年中國腹肌刺激器行業(yè)發(fā)展動態(tài)與投資前景預測報告
- 2024-2030年中國聚酰胺類彈性體(TPAE)行業(yè)需求趨勢及投資規(guī)劃分析報告
- 2024-2030年中國羥氯喹項目可行性研究報告
- 2024-2030年中國維生素C片劑市場銷售動態(tài)與競爭趨勢預測報告
- 2024-2030年中國精神病醫(yī)院行業(yè)發(fā)展展望及投資經(jīng)營管理分析報告
- 【基于活動理論的信息技術(shù)課程教學研究8300字(論文)】
- 年產(chǎn)15萬噸PET的生產(chǎn)工藝設(shè)計-畢業(yè)論文
- 車間生產(chǎn)計劃完成情況統(tǒng)計表
- 品管圈(QCC)降低ICU護士床頭交接班缺陷率課件
- 《左道:中國宗教文化中的神與魔》讀書筆記模板
- 2023年初級游泳救生員理論知識考試題庫(濃縮400題)
- 施工現(xiàn)場臨時用電安全技術(shù)規(guī)范
- 同仁堂藥品目錄
- 社會問題概論
- 高中語文-如何讀懂古詩詞教學設(shè)計學情分析教材分析課后反思
- 虛假訴訟刑事控告書(參考范文)
評論
0/150
提交評論