福建省龍巖市非一級達標校2025屆數(shù)學高二上期末質量檢測試題含解析_第1頁
福建省龍巖市非一級達標校2025屆數(shù)學高二上期末質量檢測試題含解析_第2頁
福建省龍巖市非一級達標校2025屆數(shù)學高二上期末質量檢測試題含解析_第3頁
福建省龍巖市非一級達標校2025屆數(shù)學高二上期末質量檢測試題含解析_第4頁
福建省龍巖市非一級達標校2025屆數(shù)學高二上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

福建省龍巖市非一級達標校2025屆數(shù)學高二上期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,若,則實數(shù)的值為()A. B.C. D.2.從某個角度觀察籃球(如圖1),可以得到一個對稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標軸和雙曲線,若坐標軸和雙曲線與圓O的交點將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.3.對于兩個平面、,“內(nèi)有三個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.如圖所示,正方體的棱長為2,以其所有面的中心為頂點的多面體的表面積為()A. B.C.8 D.125.已知圓與圓相交于A、B兩點,則圓上的動點P到直線AB距離的最大值為()A. B.C. D.6.直線恒過定點()A. B.C. D.7.若數(shù)列滿足,,則該數(shù)列的前2021項的乘積是()A. B.C.2 D.18.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.9.甲組數(shù)據(jù)為:5,12,16,21,25,37,乙組數(shù)據(jù)為:1,6,14,18,38,39,則甲、乙的平均數(shù)、極差及中位數(shù)相同的是()A.極差 B.平均數(shù)C.中位數(shù) D.都不相同10.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前項和為()A. B.C. D.11.已知直線過點,,則直線的方程為()A. B.C. D.12.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列an滿足,則__________14.如圖,按照以下規(guī)律排列的數(shù)陣中,第i行從左向右第j個數(shù)記為,如,,則______;令則______15.已知圓的半徑為3,,為該圓的兩條切線,為切點,則的最小值為___________.16.已知為平面的一個法向量,為直線的方向向量.若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2)(1)求圓C的標準方程;(2)直線l過B點與圓C相切,求直線l的方程,并化為一般式18.(12分)分別求出滿足下列條件的橢圓的標準方程:(1)焦點在y軸,短軸長為2,離心率為;(2)短軸一端點P與兩焦點,連線所構成的三角形為等邊三角形19.(12分)2017年廈門金磚會晤期間產(chǎn)生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會晤期間產(chǎn)生的碳排放,擬用20年時間將碳排放全部吸收,實現(xiàn)“零碳排放”目標,向世界傳遞低碳,環(huán)保辦會的積極信號,踐行金磚國家倡導的可持續(xù)發(fā)展精神據(jù)研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個遞推公式,表示與之間的關系;②證明:是等比數(shù)列,并求的通項公式;(2)為了提前5年實現(xiàn)廈門會晤“零碳排放”的目標,m的最小值為多少?參考數(shù)據(jù):,,20.(12分)如圖,四棱錐中,,,,平面.(1)在線段上是否存在一點使得平面?若存在,求出的位置;若不存在,請說明理由;(2)求四棱錐的體積.21.(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,(1)求,;(2)已知,,試比較,的大小22.(10分)如圖,在直三棱柱中,,,,為的中點,點,分別在棱,上,,.(1)求點到直線的距離(2)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.2、D【解析】設出雙曲線方程,通過做標準品和雙曲線與圓O的交點將圓的周長八等分,且AB=BC=CD,推出點在雙曲線上,然后求出離心率即可.【詳解】設雙曲線的方程為,則,因為AB=BC=CD,所以,所以,因為坐標軸和雙曲線與圓O的交點將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D3、B【解析】根據(jù)平面的性質分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個點到的距離相等,當這三個點不在一條直線上時,可得;當這三個點在一條直線上時,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有三個點到的距離相等”是“”的必要不充分條件.故選:B.4、B【解析】首先確定幾何體的空間結構特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B5、A【解析】判斷圓與的位置并求出直線AB方程,再求圓心C到直線AB距離即可計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,,即圓與相交,直線AB方程為:,圓的圓心,半徑,點C到直線AB距離的距離,所以圓C上的動點P到直線AB距離的最大值為.故選:A6、A【解析】將直線方程變形得,再根據(jù)方程即可得答案.【詳解】解:由得到:,∴直線恒過定點故選:A7、C【解析】先由數(shù)列滿足,,計算出前5項,可得,且,再利用周期性即可得到答案.【詳解】因為數(shù)列滿足,,所以,同理可得,…所以數(shù)列每四項重復出現(xiàn),即,且,而,所以該數(shù)列的前2021項的乘積是.故選:C.8、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設的傾斜角為,,所以.故選:D9、B【解析】由平均數(shù)、極差及中位數(shù)的定義依次求解即可比較【詳解】,,故甲、乙的平均數(shù)相同,甲、乙的極差分別為,,故不同,甲、乙的中位數(shù)分別為,,故不同,故選:10、B【解析】確實新數(shù)列是等比數(shù)列及公比、首項后,由等比數(shù)列前項和公式計算,【詳解】由題意,新數(shù)列為,所以,,前項和為故選:B.11、C【解析】根據(jù)兩點的坐標和直線的兩點式方程計算化簡即可.【詳解】由直線的兩點式方程可得,直線l的方程為,即故選:C12、B【解析】根據(jù)等差數(shù)列的性質計算出正確答案.【詳解】由等差數(shù)列的性質可知,得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2019【解析】將已知化為代入可以左右相消化簡,將已知化為,代入可以上下相消化簡,再全部代入求解即可.【詳解】由知故所以故答案為:201914、①.55②.【解析】令易知是首項為,公差為1的等差數(shù)列,寫出通項公式,再應用累加法求及通項公式,結合求通項公式,進而可得,最后兩次應用錯位相減法求即可.【詳解】由題設知:令,則是首項為,公差為1的等差數(shù)列,故,所以,即,由上可得:,則,而,所以,則,所以,,所以,令,則,所以,故,綜上,,則.故答案為:,.【點睛】關鍵點點睛:通過圖總結規(guī)律,易知是等差數(shù)列,應用累加法求,再由求通項公式,最后應用錯位相減法求前n項和.15、【解析】設(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結合基本不等式即可求解詳解】如圖所示,設(),,則,,,,當且僅當即時等號成立,∴的最小值是.故答案為:16、##【解析】根據(jù)線面平行列方程,化簡求得的值.【詳解】由于,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)設圓的標準方程為:,則分別代入原點和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,則分別討論斜率存在與否,運用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設圓C的標準方程為,則分別代入原點和,得到,解得則圓的標準方程為(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,當時,到的距離為2,不合題意,舍去;當斜率存在時,設,由直線與圓相切,得到,即有,解得,故直線,即為點睛:本題考查直線與圓位置關系,考查圓的方程的求法和直線與圓相切的條件,考查運算能力,屬于中檔題;圓的方程有一般形式與標準形式,在該題中利用待定系數(shù)法將其設為標準形式,列、解出方程組即可;當直線與圓相切時等價于圓心到直線的距離等于半徑,已知直線上一點寫出直線的方程需注意斜率不存在的情形.18、(1)(2)【解析】(1)設出橢圓方程,根據(jù)短軸長和離心率求出,,從而求出橢圓方程;(2)短軸端點與焦點相連所得的線段長即為,從而求出,得到橢圓方程.【小問1詳解】設橢圓方程為,則,,則,解得:,則該橢圓的方程為【小問2詳解】設橢圓方程為,由題得:,,則,則該橢圓的方程為19、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據(jù)題意直接寫出一個遞推公式即可;②要證明是等比數(shù)列,只要證明為一個常數(shù)即可,求出等比數(shù)列的通項公式,即可求出的通項公式;(2)記為數(shù)列的前n項和,根據(jù)題意求出,利用分組求和法求出數(shù)列的前n項和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因為,所以,所以,因為所以數(shù)列是等比數(shù)列,首項是,公比是1.02,所以,所以;【小問2詳解】解:記為數(shù)列的前n項和,,依題,所以,所以m最少為6.56噸20、(1)存在,為的中點,證明見解析;(2).【解析】(1)取的中點,的中點,連接,,,證明,由線面平行的判定定理即可求證;(2)先證明平面面,過點作于點,即可證明面,在中,利用面積公式求出即為四棱錐的高,再由棱錐的體積公式即可求解.【詳解】(1)線段上存在點使得平面,為的中點.證明如下:如圖取的中點,的中點,連接,,,因為,分別為,的中點,所以且因為且,所以,且,所以四邊形為平行四邊形,可得,因為面,面,所以平面;(2)過點作于點,因為平面,面,所以平面面,因為,面,平面面,所以面,因為,,所以,,所以,即,所以,即為四棱錐的高,所以.21、(1),;(2).【解析】(1)設等差數(shù)列的公差,等比數(shù)列的公比,由已知列式計算得解.(2)由(1)的結論,用等比數(shù)列前n項和公式求出,用裂項相消法求出,再比較大小作答.【小問1詳解】設等差數(shù)列的公差為,等比數(shù)列的公比為,依題意,,整理得:,解得,所以,.【小問2詳解】由(1)知,,數(shù)列是首項為,公比為的等比數(shù)列,則,,,則,用數(shù)學歸納法證明,,①當時,左邊,右邊,左邊>右邊,即原不等式成立,②假設當時,不等式成立,即,則,即時,原不等式成立,綜合①②知,,成立,因此,,即,所以.22、(1);(2).【解析】(1)由直棱柱的性質及勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論