




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Federated
Learning姜育剛,馬興軍,吳祖煊/2017/04/federated-learning-collaborative.htmlRecap:week10口 CommonTamperingandDeepfakes口 ImageManipulationDetection口 VideoManipulationDetectionThisWeek口 FederatedLearning口 PrivacyinFederatedLearning口 RobustnessinFederatedLearning口 ChallengesandFutureResearchTraditionalMachineLearningDataModelDataandmodelinonesingleplaceTraditionalMachineLearningDataModelWhat
if
we
need
more
data?DataGatheringUsingmultipleGPUsFederatedLearning:Whatisit?Google:FederatedLearning:CollaborativeMachineLearningwithoutCentralizedTrainingDataFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfNextwordpredictiononmobile.FederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfHorizontalFL(橫著切):samefeatures,differentsamplesFederatedLearning:TypesVerticalFL(縱著切):samesamples,differentfeaturesFederatedLearning:TypesFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfFederatedLearning:TypesFederatedTransferLearning:differentsamples,differentfeaturesFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfCompareDifferentParadigmsFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfCompareDifferentParadigmshttps:///projects/distributed-learning-and-collaborative-learning-1/overview/SplitLearningvsFederatedLearningFederatedLearningFrameworksHE:homomorphicencryption SS:secretSharingObjectivesandUpdatesinFLGlobalobjectiveLocalobjective:LocalUpdates:GlobalAggregation(e.g.FedAvg):FederatedLearning–MajorChallengesExpensiveCommunicationSystemsHeterogeneityStatisticalHeterogeneityPrivacyandSecurityConcernsFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfFederatedLearning-HorizontalFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfHFLcanfurtherbedividedinto…?PrivacyandSecurityThreatsLyuetal.“Privacyandrobustnessinfederatedlearning:Attacksanddefenses.”TNNLS,2022.SummaryofThreatModelsFLserver(insider)FLparticipants(insider)Eavesdroppers(outsider)Serviceusers(outsider)□InsidervsOutsider □InsiderAttacksByzantine:theworstattacker,knowseverythingaboutthesystem,doesnotobeytheprotocol,sendarbitraryupdates,evencolludewitheachother.Sybil:takingoverthenetworkbysimulatingmanydummyparticipants,out-votethehonestusersSemi-honestvsMaliciousSemi-honestsettingMalicioussettingTraining-timevsTest-timeStealprivatedata,stealmodel,corruptthemodel(trainingtime)Adversarialattack(testtime)SummaryofAttacksExistingattacksagainstserver-basedFLPoisoningAttacksDatapoisoningvsmodel(weight)poisoningDataPoisoningAttacksinTraditionalML□Dirty-labelPoisoningLabelflipping(onlychangelabels)Dirty-labelbackdoor(changeinputsandlabels)Clean-labelPoisoningClean-labelbackdoor(onlychangeinputs)DataPoisoningAttacksinTraditionalMLAsimplepatterncanmakethemodeltomemorizeFLPoisoningAttacks–ModelPoisoningMaincharacteristics:ChangelocalmodelweightsMostlyByzantineattack(attackercandoanythingtotheweights)CanattackByzantine-robustaggregationmechanismssuchasKrumandcoordinate-wisemedianinsteadofweightedaveragingKrum:PrivacyAttacksForeverycommunicationround,localclientshavethechancetoreverseengineerothers’gradients.Fromthereversedgradients,reverseengineer:RepresentationsMembershipPropertiesSensitiveattributesInVFL:featuresPrivacyAttacks–InferenceAttacksDeepmodelsundertheGAN:informationleakagefromcollaborativedeeplearning,CCS2017InferenceclassrepresentationsusingGANsCIFAR-10horseclassReconstructAlice’sfaceimagePrivacyAttacks–InferenceAttacksComprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning,S&P,2019Inferencemembership:Passiveattacks:observeandinference.Activeattacks:influencethetargetmodelinordertoextractmoreinformation.WeaknessofFL:FLcreatesanenvironmentfor(almost)white-boxattacksPrivacyAttacks–InferenceAttacksOtherinferenceattacks:inferringproperties,trainingdata,labels...DeepLeakagefromGradient(DLG)ImprovedDeepLeakagefromGradient(iDLG)…Defenses–PrivacyDefenseHomomorphic
Encryption:RSAEl
GamalPaillier…Homomorphic
properties:Allows
computation
directly
onencrypted
data(“可算不可見”)Needs
to
be
designed
for
eachalgorithmA
side
note:
attacking
encrypted
FL
is
challengingbut
still
possible!Defenses–PrivacyDefense2.
SecureMultipartyComputation(SMC,Yaosharing):SecureML(data-independentofflinephase+fastonlinephase)Offlinemultiplicationtriplets,truncate,sharingCharacteristics:HighlevelprivacyHighcomputationandcommunicationcostYao'sMillionaires'problemProtocolsforSecureComputations,AndrewChi-ChihYao,1982,UCBerkeleyDefenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesofDP:LocalDPCentralizedDPDistributedDPDefenses–PrivacyDefenseDataflowofstatisticsunderLDP2.DifferentialPrivacy(DP):Defenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesoffrequencyestimationDefenses–PrivacyDefense2.DifferentialPrivacy(DP):Real-worldapplications.Vanilla
FLM:ADPmechanismCentralized
DPM:ADPmechanismLocal
DPM:ADPmechanismE:encryptionD:decryptionDistributed
DPDefenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Setting:nparticipants,fareByzantine,with??≥????+??Atcommunicationroundt,?? ?? ??serverreceives{????,????,…,????}foreach????:??selecttheclosest(L2distance)n-f-2intoset????compute??????????????=∑?? ??∈???? ????????????? ????????????=???=argmin{?????????????? ,…,??????????????}updateglobalparameter:????.??=????+??????????Blanchardetal.“Machinelearningwithadversaries:Byzantinetolerantgradientdescent.”NeurIPS,2017.Defenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Blanchard
et
al.
“Machine
learning
with
adversaries:
Byzantine
tolerant
gradient
descent.”
NeurIPS,
2017.紅色:攻擊梯度藍(lán)色:真實(shí)梯度黑色:本地梯度黑色曲線:損失函數(shù)Defenses–ByzantineDefenseMorerobustaggregationmethods:Multi-Krum=Krum+Averaging=Krumrobustness+increasedconvergencespeedcoordinate-wisemedian,coordinate-wisetrimmedmeanmedianisnotgoodforconvergenceBulyan=Krum+trimmedmedianMedianandgeometric-median(RobustFederatedAggregation)RFA:approximategeometricmedian(notrobusttoByzantineattacks)Defenses–ByzantineDefenseModelpoisoningattackcanbreakKrumandcoordinate-wisemedianAnalyzingfederatedlearningthroughanadversariallens,ICML2019.??/:adversarialtargetclassr:numberofpoisonedsamples??0:cleandata1???2:estimationoftheglobalparametersReversedgradientsfromthelastround.Defenses–SybilDefenseFromtraditionalML:RejectonNegativeInfluence(RONI)WithacleanvalidationdatasetItrequiresuniformdistributioninnon-IIDsetting,notgood.FoolsGold:Sybilsharethesameobjective,driftsawayfromtheoriginalobjectiveCoreidea:cosinesimilarityFoolsGold:MitigatingSybilsinFederatedLearningPoisoning,/abs/1808.04866Defenses–SybilDefenseDistributedbackdoorattack(DBA)canbypassbothRFAandFoolsGold.DBA:Distributed
Backdoor
Attacks
against
Federated
Learning,
ICLR
2020.
Defenses
-
SummaryDefenseagainstFederatedLearningPoisoning.n:numberofparticipants.RemainingChallengesandFutureResearch□ CurseofdimensionalityLargermodelsaremorevulnerableSharingweights/gradientsmaynotbeagoodidea□ WeaknessesofcurrentattacksGANattackassumestheclassofdataisfromonesingleparticipantDLG/iDLGworkwithsecond-ordergradientmethod(expensive)andsmallminibatch-gradients(B=8)□ Vulnerabilitytofreeriders:pretendtohavedatabutnot.□ WeaknessofCurrentPrivacy-preservingTechniquesSecureaggregationismorevulnerabletopoisoningattacks
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商場(chǎng)店面轉(zhuǎn)讓合同范本
- 公司勸退員工合同范本
- 共同管理合同范本
- 商貿(mào)公司策劃合同范本
- 水費(fèi)收取維護(hù)合同范本
- 吉林省吉林市蛟河市2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含解析)
- 中國(guó)傳統(tǒng)節(jié)日-端午節(jié)73
- 2025年生豬交易合同標(biāo)準(zhǔn)范本
- 2025版租賃合同樣書
- 語(yǔ)文課程標(biāo)準(zhǔn)與教材研究知到課后答案智慧樹章節(jié)測(cè)試答案2025年春內(nèi)江師范學(xué)院
- 廣東省深圳市寶安區(qū)10校聯(lián)考2023-2024學(xué)年八年級(jí)下學(xué)期期中數(shù)學(xué)試題(含答案)
- 2024外研社英語(yǔ)七年級(jí)(下)詞匯表
- 綠色建筑能源管理
- 2022年度外經(jīng)貿(mào)發(fā)展專項(xiàng)資金管理辦法(最新版)政策法規(guī)
- 加拿大介紹-PPT課件
- 漢中市城鎮(zhèn)職工基本醫(yī)療保險(xiǎn)門診慢性病申請(qǐng)鑒定表
- 每天堅(jiān)持一小時(shí)體育鍛煉
- 鋁合金壓鑄件典型內(nèi)部缺陷
- 場(chǎng)地移交確認(rèn)書
- 河北省分公司聯(lián)通公司員工退出管理辦法(征求意見稿)
- 遼寧計(jì)價(jià)定額2008計(jì)算規(guī)則
評(píng)論
0/150
提交評(píng)論