重慶市江津聚奎中學聯(lián)盟重點達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第1頁
重慶市江津聚奎中學聯(lián)盟重點達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第2頁
重慶市江津聚奎中學聯(lián)盟重點達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第3頁
重慶市江津聚奎中學聯(lián)盟重點達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第4頁
重慶市江津聚奎中學聯(lián)盟重點達標名校2024屆中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

重慶市江津聚奎中學聯(lián)盟重點達標名校2024屆中考數(shù)學考試模擬沖刺卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=142.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形3.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.4.如圖,A、B、C、D是⊙O上的四點,BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°5.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數(shù)是()A.15° B.22.5° C.30° D.45°6.如圖,直線a∥b,直線c與直線a、b分別交于點A、點B,AC⊥AB于點A,交直線b于點C.如果∠1=34°,那么∠2的度數(shù)為()A.34° B.56° C.66° D.146°7.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.58.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點,射線CF和BA的延長線交于點E,如果,那么的值是()A. B. C. D.9.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是()A.8B.9C.10D.1110.實數(shù)a在數(shù)軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定11.在六張卡片上分別寫有,π,1.5,5,0,六個數(shù),從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率是()A. B. C. D.12.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為6,∠ADC=60°,則劣弧AC的長為()A.2π B.4π C.5π D.6π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.化簡:_____________.14.計算的結果為_____.15.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.16.若關于x的二次函數(shù)y=ax2+a2的最小值為4,則a的值為______.17.分解因式:2a2﹣2=_____.18.如圖,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,則∠DAE=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x的方程x2-(m+2)x+(2m-1)=0。求證:方程恒有兩個不相等的實數(shù)根;若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。20.(6分)如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.求∠CDE的度數(shù);求證:DF是⊙O的切線;若AC=DE,求tan∠ABD的值.21.(6分)“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).22.(8分)先化簡,再求值:,其中x=﹣1.23.(8分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.24.(10分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數(shù).()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)25.(10分)某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當天的批發(fā)價和零售價如表所示:品名獼猴桃芒果批發(fā)價元千克2040零售價元千克2650他購進的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣完,他能賺多少錢?26.(12分)今年3月12日植樹節(jié)期間,學校預購進A,B兩種樹苗.若購進A種樹苗3棵,B種樹苗5棵,需2100元;若購進A種樹苗4棵,B種樹苗10棵,需3800元.求購進A,B兩種樹苗的單價;若該學校準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵.27.(12分)據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強用所學知識對一條筆直公路上的車輛進行測速,如圖所示,觀測點C到公路的距離CD=200m,檢測路段的起點A位于點C的南偏東60°方向上,終點B位于點C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測得此車由A處行駛到B處的時間為10s.問此車是否超過了該路段16m/s的限制速度?(觀測點C離地面的距離忽略不計,參考數(shù)據(jù):≈1.41,≈1.73)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】x2-8x=2,

x2-8x+16=1,

(x-4)2=1.

故選C.【點睛】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.2、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.3、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.4、A【解析】

解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.5、A【解析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質(zhì).6、B【解析】分析:先根據(jù)平行線的性質(zhì)得出∠2+∠BAD=180°,再根據(jù)垂直的定義求出∠2的度數(shù).詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點睛:本題主要考查了平行線的性質(zhì),解題的關鍵是掌握兩直線平行,同旁內(nèi)角互補,此題難度不大.7、C【解析】分析:根據(jù)單項式的性質(zhì)即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.8、D【解析】分析:根據(jù)相似三角形的性質(zhì)進行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點睛:考查相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.9、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數(shù)是360÷36=10,故選C.考點:多邊形的內(nèi)角和外角.10、C【解析】

根據(jù)數(shù)軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質(zhì)及絕對值的代數(shù)意義化簡,去括號合并即可得到結果.【詳解】解:根據(jù)數(shù)軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質(zhì)與化簡,以及實數(shù)與數(shù)軸,熟練掌握運算法則是解本題的關鍵.11、B【解析】

無限不循環(huán)小數(shù)叫無理數(shù),無理數(shù)通常有以下三種形式:一是開方開不盡的數(shù),二是圓周率π,三是構造的一些不循環(huán)的數(shù),如1.010010001……(兩個1之間0的個數(shù)一次多一個).然后用無理數(shù)的個數(shù)除以所有書的個數(shù),即可求出從中任意抽取一張,卡片上的數(shù)為無理數(shù)的概率.【詳解】∵這組數(shù)中無理數(shù)有,共2個,∴卡片上的數(shù)為無理數(shù)的概率是.故選B.【點睛】本題考查了無理數(shù)的定義及概率的計算.12、B【解析】

連接OA、OC,然后根據(jù)圓周角定理求得∠AOC的度數(shù),最后根據(jù)弧長公式求解.【詳解】連接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,則劣弧AC的長為:=4π.故選B.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關鍵是掌握弧長公式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)分式的運算法則即可求解.【詳解】原式=.故答案為:.【點睛】此題主要考查分式的運算,解題的關鍵是熟知分式的運算法則.14、﹣2【解析】

根據(jù)分式的運算法則即可得解.【詳解】原式===,故答案為:.【點睛】本題主要考查了同分母的分式減法,熟練掌握相關計算法則是解決本題的關鍵.15、【解析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案為.16、1.【解析】

根據(jù)二次函數(shù)的性質(zhì)列出不等式和等式,計算即可.【詳解】解:∵關于x的二次函數(shù)y=ax1+a1的最小值為4,

∴a1=4,a>0,

解得,a=1,

故答案為1.【點睛】本題考查的是二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)是解題的關鍵.17、2(a+1)(a﹣1).【解析】

先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解.【詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【點睛】本題考查了提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.18、10°【解析】

根據(jù)線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度數(shù)即可得到答案.【詳解】∵點D、E分別是AB、AC邊的垂直平分線與BC的交點,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案為10°【點睛】本題主要考查對等腰三角形的性質(zhì),三角形的內(nèi)角和定理,線段的垂直平分線的性質(zhì)等知識點的理解和掌握,能綜合運用這些性質(zhì)進行計算是解此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見詳解;(2)4+或4+.【解析】

(1)根據(jù)關于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結論.(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關系求得方程的另一根.分類討論:①當該直角三角形的兩直角邊是2、3時,②當該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理求出得該直角三角形的另一邊,再根據(jù)三角形的周長公式進行計算.【詳解】解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4>0,即△>0.∴關于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根.(2)∵此方程的一個根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,則方程的另一根為:m+2-1=2+1=3.①當該直角三角形的兩直角邊是1、3時,由勾股定理得斜邊的長度為,該直角三角形的周長為1+3+=4+.②當該直角三角形的直角邊和斜邊分別是1、3時,由勾股定理得該直角三角形的另一直角邊為;則該直角三角形的周長為1+3+=4+.20、(1)90°;(1)證明見解析;(3)1.【解析】

(1)根據(jù)圓周角定理即可得∠CDE的度數(shù);(1)連接DO,根據(jù)直角三角形的性質(zhì)和等腰三角形的性質(zhì)易證∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切線;(3)根據(jù)已知條件易證△CDE∽△ADC,利用相似三角形的性質(zhì)結合勾股定理表示出AD,DC的長,再利用圓周角定理得出tan∠ABD的值即可.【詳解】解:(1)解:∵對角線AC為⊙O的直徑,∴∠ADC=90°,∴∠EDC=90°;(1)證明:連接DO,∵∠EDC=90°,F(xiàn)是EC的中點,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切線;(3)解:如圖所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴,∴DC1=AD?DE∵AC=1DE,∴設DE=x,則AC=1x,則AC1﹣AD1=AD?DE,期(1x)1﹣AD1=AD?x,整理得:AD1+AD?x﹣10x1=0,解得:AD=4x或﹣4.5x(負數(shù)舍去),則DC=,故tan∠ABD=tan∠ACD=.21、(1)40;(2)72;(3)1.【解析】

(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學生總?cè)藬?shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=1,所以估計“最想去景點B“的學生人數(shù)為1人.22、-2.【解析】

根據(jù)分式的運算法化解即可求出答案.【詳解】解:原式=,當x=﹣1時,原式=.【點睛】熟練運用分式的運算法則.23、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質(zhì)說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質(zhì)求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D在AB延長線上,如圖,連結MD;此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點睛】本題考查了信息遷移,三角形外角的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質(zhì)及分類討論的數(shù)學思想,理解“好點”的定義并能進行分類討論是解答本題的關鍵.24、(1)袋子中白球有2個;(2).【解析】試題分析:(1)設袋子中白球有x個,根據(jù)概率公式列方程解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,求得所有等可能的結果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.試題解析:(1)設袋子中白球有x個,根據(jù)題意得:=,解得:x=2,經(jīng)檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論