版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶市江津中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正方形ABCD的邊長(zhǎng)為2,E,F(xiàn)分別為CD,CB的中點(diǎn),分別沿AE,AF將三角形ADE,ABF折起,使得點(diǎn)B,D恰好重合,記為點(diǎn)P,則AC與平面PCE所成角等于()A. B.C. D.2.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡(jiǎn)稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.3.直線與圓相切,則實(shí)數(shù)等于()A.或 B.或C.3或5 D.5或34.若數(shù)列滿足,,則數(shù)列的通項(xiàng)公式為()A. B.C. D.5.若傾斜角為的直線過(guò)兩點(diǎn),則實(shí)數(shù)()A. B.C. D.6.已知,是雙曲線的左、右焦點(diǎn),點(diǎn)A是的左頂點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓交的一條漸近線于、兩點(diǎn),以為直徑的圓與軸交于兩點(diǎn),且平分,則雙曲線的離心率為()A. B.2C. D.37.△ABC兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.8.下列命題是真命題的個(gè)數(shù)為()①不等式的解集為②不等式的解集為R③設(shè),則④命題“若,則或”為真命題A1 B.2C.3 D.49.在數(shù)列中,,則()A.2 B.C. D.10.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交11.拋物線C:的焦點(diǎn)為F,P,R為C上位于F右側(cè)的兩點(diǎn),若存在點(diǎn)Q使四邊形PFRQ為正方形,則()A. B.C. D.12.過(guò)雙曲線的右頂點(diǎn)作斜率為的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為.若,則雙曲線的離心率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、是橢圓()長(zhǎng)軸的兩個(gè)端點(diǎn),、是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),直線,的斜率分別為,().若橢圓的離心率為,則的最小值為_(kāi)_____14.若,則__________15.某校學(xué)生在研究民間剪紙藝術(shù)時(shí),發(fā)現(xiàn)剪紙時(shí)經(jīng)常會(huì)沿紙的某條對(duì)稱軸把紙對(duì)折,規(guī)格為的長(zhǎng)方形紙,對(duì)折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對(duì)折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對(duì)折4次共可以得到不同規(guī)格圖形的種數(shù)為_(kāi)_____;如果對(duì)折次,那么______.16.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,數(shù)列的前項(xiàng)和為,求不等式的解集.18.(12分)在數(shù)列中,,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)在平面直角坐標(biāo)系中,已知,動(dòng)點(diǎn)M滿足(1)求M的軌跡方程;(2)設(shè),點(diǎn)N是的中點(diǎn),求點(diǎn)N的軌跡方程;(3)設(shè)M的軌跡與N的軌跡的交點(diǎn)為P、Q,求20.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長(zhǎng);若不存在,請(qǐng)說(shuō)明理由21.(12分)等差數(shù)列的公差d不為0,滿足成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列與通項(xiàng)公式:(2)若,求數(shù)列的前n項(xiàng)和.22.(10分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點(diǎn)C到平面的距離;(2)線段上是否存在點(diǎn)F,使與平面所成角正弦值為,若存在,求出,若不存在,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,利用空間向量求解【詳解】由題意得,因?yàn)檎叫蜛BCD的邊長(zhǎng)為2,E,F(xiàn)分別為CD,CB的中點(diǎn),所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,設(shè),則由,,,得,解得,則設(shè)平面的法向量為,則,令,則,因?yàn)椋訟C與平面PCE所成角的正弦值,因?yàn)锳C與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A2、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因?yàn)殡p曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A3、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結(jié)果【詳解】由,得,則圓心為,半徑為2,因?yàn)橹本€與圓相切,所以,得,解得或,故選:C4、B【解析】根據(jù)等差數(shù)列的定義和通項(xiàng)公式直接得出結(jié)果.【詳解】因?yàn)椋詳?shù)列是等差數(shù)列,公差為1,所以.故選:B5、A【解析】解方程即得解.【詳解】解:由題得.故選:A6、B【解析】由直徑所對(duì)圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因?yàn)?,所以又因?yàn)槠椒?,所以,由,得,所以,即所以故選:B7、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)?,所以,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.8、B【解析】舉反例判斷A,解一元二次不等式確定B,由導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)判斷C,利用逆否命題判斷D【詳解】顯然不是的解,A錯(cuò);,B正確;,,C錯(cuò);命題“若,則或”的逆否命題是:若且,則,是真命題,原命題也是真命題,D正確真命題個(gè)數(shù)2.故選:B9、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計(jì)算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D10、B【解析】以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示求出,再利用向量的坐標(biāo)運(yùn)算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長(zhǎng)為1.以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則.設(shè),則,取.,.故選:B【點(diǎn)睛】本題考查了空間向量垂直的坐標(biāo)表示、空間向量的坐標(biāo)表示、空間向量共線定理,屬于基礎(chǔ)題.11、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對(duì)稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對(duì)稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A12、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點(diǎn):直線與圓錐曲線的綜合問(wèn)題;雙曲線的簡(jiǎn)單性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出點(diǎn),,,的坐標(biāo),表示出直線,的斜率,作和后利用基本不等式求最值,利用離心率求得與的關(guān)系,則答案可求詳解】解:設(shè),,,,,,,,,,,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),,是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),,,即,的最小值為,橢圓的離心率為,,即,得,的最小值為故答案為:14、【解析】分別令和,再將兩個(gè)等式相加可求得的值.【詳解】令,則;令,則.上述兩式相加得故答案為:.【點(diǎn)睛】本題考查偶數(shù)項(xiàng)系數(shù)和的計(jì)算,一般令和,通過(guò)對(duì)等式相加減求得,考查計(jì)算能力,屬于中等題.15、①.5②.【解析】(1)按對(duì)折列舉即可;(2)根據(jù)規(guī)律可得,再根據(jù)錯(cuò)位相減法得結(jié)果.【詳解】(1)由對(duì)折2次共可以得到,,三種規(guī)格的圖形,所以對(duì)著三次的結(jié)果有:,共4種不同規(guī)格(單位;故對(duì)折4次可得到如下規(guī)格:,,,,,共5種不同規(guī)格;(2)由于每次對(duì)著后的圖形的面積都減小為原來(lái)的一半,故各次對(duì)著后的圖形,不論規(guī)格如何,其面積成公比為的等比數(shù)列,首項(xiàng)為120,第n次對(duì)折后的圖形面積為,對(duì)于第n此對(duì)折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過(guò)程和結(jié)論,猜想為種(證明從略),故得猜想,設(shè),則,兩式作差得:,因此,.故答案為:;.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對(duì)于等差等比數(shù)列,利用公式法可直接求解;(2)對(duì)于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯(cuò)位相減法求和;(3)對(duì)于結(jié)構(gòu),利用分組求和法;(4)對(duì)于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項(xiàng)相消法求和.解答題16、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【詳解】因?yàn)樵摻M數(shù)據(jù)的極差為5,,所以,解得.因?yàn)?,所以該組數(shù)據(jù)的方差為故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用與的關(guān)系求解即可;(2)首先利用裂項(xiàng)求和得到,從而得到,再解不等式即可.【小問(wèn)1詳解】令,則,當(dāng)時(shí),,當(dāng)時(shí),也符合上式,即數(shù)列的通項(xiàng)公式為.【小問(wèn)2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.18、(1)證明見(jiàn)解析,;(2).【解析】(1)利用等比數(shù)列的定義結(jié)合已知條件即可得到證明.(2)運(yùn)用分組求和的方法,利用等比數(shù)列和等差數(shù)列前項(xiàng)和公式求解即可.【詳解】(1)證明:∵,∴數(shù)列為首項(xiàng)是2,公比是2的等比數(shù)列.∴,∴.(2)由(1)知,,【點(diǎn)睛】本題考查等比數(shù)列的定義,通項(xiàng)公式的應(yīng)用,考查等差數(shù)列和等比數(shù)列前項(xiàng)和公式的應(yīng)用,考查分組求和的方法,屬于基礎(chǔ)題.19、(1)(2)(3)【解析】(1)設(shè),根據(jù)向量數(shù)量積求解即可得答案;(2)設(shè),,進(jìn)而根據(jù)相關(guān)點(diǎn)法求解即可;(3)根據(jù)題意得弦由兩圓相交得,進(jìn)而根據(jù)幾何法弦長(zhǎng)即可得答案.【小問(wèn)1詳解】解:設(shè),則,所以,即所以M的軌跡方程為.【小問(wèn)2詳解】解:設(shè),,因?yàn)辄c(diǎn)N是的中點(diǎn),所以,即,又因?yàn)樵谏?,所以,?所以點(diǎn)N的軌跡方程為.【小問(wèn)3詳解】解:因?yàn)镸的軌跡與N的軌跡分別為,,是兩個(gè)圓.所以兩個(gè)方程作差得直線所在的方程,所以圓到:的距離為,所以20、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問(wèn)1詳解】在中,,因?yàn)?,分別是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)?,所以平面,所以平面,因?yàn)槠矫妫?,所以,因?yàn)槠矫?,平面,所以平面平面,因?yàn)?,所以,因?yàn)?,所以是等邊三角形,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因?yàn)?,所以,所以,得,所以點(diǎn)到平面的距離為【小問(wèn)2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以21、(1),(2)【解析】(1)根據(jù)等比中項(xiàng)的性質(zhì)及等差數(shù)列的通項(xiàng)公式得到方程求出公差,即可求出的通項(xiàng)公式,由,當(dāng)時(shí),求出,當(dāng)時(shí),兩式作差,即可求出;(2)由(1)可得,利用錯(cuò)位相減法求和即可;【小問(wèn)1詳解】解:由已知,又,所以故解得(舍去)或∴∵①故當(dāng)時(shí),可知,∴,當(dāng)時(shí),可知②①②得∴又也滿足,故當(dāng)時(shí),都有;【小問(wèn)2詳解】解:由(1)知,故③,∴④,由③④得整理得.22、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點(diǎn)的坐標(biāo),利用點(diǎn)面距離公式即可求得點(diǎn)面距離(2)假設(shè)滿足
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)滑雪教學(xué)合作合同書(shū)2024版版B版
- 西安交通大學(xué)《基礎(chǔ)護(hù)理學(xué)基本技能1》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢晴川學(xué)院《心理咨詢倫理》2023-2024學(xué)年第一學(xué)期期末試卷
- 專業(yè)塔吊故障檢修服務(wù)協(xié)議樣本版A版
- 二零二五版建筑垃圾再生利用與建材企業(yè)合作協(xié)議3篇
- 二零二五年度股權(quán)代持與公司治理創(chuàng)新合同范本2篇
- 2024版供貨協(xié)議范本
- 2024年網(wǎng)絡(luò)安全服務(wù)提供商合作協(xié)議 with 服務(wù)內(nèi)容包括攻防演練、安全監(jiān)控
- 二零二五版汽車進(jìn)口運(yùn)輸與知識(shí)產(chǎn)權(quán)保護(hù)合同3篇
- 2025年度綠色能源項(xiàng)目采購(gòu)代理委托服務(wù)協(xié)議3篇
- 薪酬與福利管理實(shí)務(wù)-習(xí)題答案 第五版
- 廢舊物資處置申請(qǐng)表
- GB/T 37234-2018文件鑒定通用規(guī)范
- GB/T 31888-2015中小學(xué)生校服
- 質(zhì)量檢查考核辦法
- 云南省普通初中學(xué)生成長(zhǎng)記錄-基本素質(zhì)發(fā)展初一-初三
- 2023年系統(tǒng)性硬化病診斷及診療指南
- 外科醫(yī)師手術(shù)技能評(píng)分標(biāo)準(zhǔn)
- 《英語(yǔ)教師職業(yè)技能訓(xùn)練簡(jiǎn)明教程》全冊(cè)配套優(yōu)質(zhì)教學(xué)課件
- 采購(gòu)控制程序
- 六年級(jí)上冊(cè)數(shù)學(xué)簡(jiǎn)便計(jì)算題200題專項(xiàng)練習(xí)
評(píng)論
0/150
提交評(píng)論