版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆甘肅省天水地區(qū)高一上數(shù)學期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)f(x)=-log2x,則f(x)的零點所在的區(qū)間是()A.(0,1) B.(2,3)C.(3,4) D.(4,+∞)2.已知函數(shù),若對一切,都成立,則實數(shù)a的取值范圍為()A. B.C. D.3.設(shè),則“”是“”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知,,,則()A. B.C. D.5.的值等于A. B.C. D.6.已知函數(shù)是定義域上的遞減函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.7.已知函數(shù)對任意都有,則等于A.2或0 B.-2或0C.0 D.-2或28.已知角是的內(nèi)角,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件9.已知命題p:,,則()A., B.,C., D.,10.已知全集,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個圓錐的側(cè)面展開圖是半徑為3,圓心角為的扇形,則該圓錐的體積為________.12.已知冪函數(shù)(是常數(shù))的圖象經(jīng)過點,那么________13.如圖,在四面體A-BCD中,已知棱AC的長為,其余各棱長都為1,則二面角A-CD-B的平面角的余弦值為________.14.已知圓:,為圓上一點,、、,則的最大值為______.15.已知則_______.16.已知函數(shù),若a、b、c互不相等,且,則abc的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)已知,,求;(2)已知,,求、的值;(3)已知,,且,求的值.18.已知函數(shù),.(1)求函數(shù)圖象的對稱軸的方程;(2)當時,求函數(shù)的值域;(3)設(shè),存在集合,當且僅當實數(shù),且在時,不等式恒成立.若在(2)的條件下,恒有(其中),求實數(shù)的取值范圍.19.設(shè)函數(shù).(1)求的最小正周期和最大值;(2)求的單調(diào)遞增區(qū)間.20.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的值域21.已知長方體AC1中,棱AB=BC=3,棱BB1=4,連接B1C,過B點作B1C的垂線交CC1于E,交B1C于F.(1)求證A1C⊥平面EBD;(2)求二面角B1—BE—A1的正切值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】先判斷出函數(shù)的單調(diào)性,然后得出的函數(shù)符號,從而得出答案.【詳解】由在上單調(diào)遞減,在上單調(diào)遞減所以函數(shù)在上單調(diào)遞減又根據(jù)函數(shù)f(x)在上單調(diào)遞減,由零點存在定理可得函數(shù)在(3,4)之間存在零點.故選:C2、C【解析】將,成立,轉(zhuǎn)化為,對一切成立,由求解即可.【詳解】解:因為函數(shù),若對一切,都成立,所以,對一切成立,令,所以,故選:C【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;.3、A【解析】解不等式,再判斷不等式解集的包含關(guān)系即可.【詳解】由得,由得,故“”是“”的充分不必要條件.故選:A.4、C【解析】求出集合,利用交集的定義可求得集合.【詳解】已知,,,則,因此,.故選:C.5、C【解析】因為,所以可以運用兩角差的正弦公式、余弦公式,求出的值.【詳解】,,,故本題選C.【點睛】本題考查了兩角差的正弦公式、余弦公式、以及特殊角的三角函數(shù)值.其時本題還可以這樣解:,.6、B【解析】由指數(shù)函數(shù)的單調(diào)性知,即二次函數(shù)是開口向下的,利用二次函數(shù)的對稱軸與1比較,再利用分段函數(shù)的單調(diào)性,可以構(gòu)造一個關(guān)于a的不等式,解不等式即可得到實數(shù)a的取值范圍【詳解】函數(shù)是定義域上的遞減函數(shù),當時,為減函數(shù),故;當時,為減函數(shù),由,得,開口向下,對稱軸為,即,解得;當時,由分段函數(shù)單調(diào)性知,,解得;綜上三個條件都滿足,實數(shù)a的取值范圍是故選:B.【點睛】易錯點睛:本題考查分段函數(shù)單調(diào)性,函數(shù)單調(diào)性的性質(zhì),其中解答時易忽略函數(shù)在整個定義域上為減函數(shù),則在分界點處()時,前一段的函數(shù)值不小于后一段的函數(shù)值,考查學生的分析能力與運算能力,屬于中檔題.7、D【解析】分析:由條件可得,函數(shù)f(x)的圖象關(guān)于直線x=對稱,故f()等于函數(shù)的最值,從而得出結(jié)論詳解:由題意可得,函數(shù)f(x)的圖象關(guān)于直線x=對稱,故f()=±2,故答案為±2點睛:本題考查了函數(shù)f(x)=Asin(ωx+φ)的圖象與性質(zhì)的應用問題,是基礎(chǔ)題目.一般函數(shù)的對稱軸為a,函數(shù)的對稱中心為(a,0).8、C【解析】在中,由求出角A,再利用充分條件、必要條件的定義直接判斷作答.【詳解】因角是的內(nèi)角,則,當時,或,即不一定能推出,若,則,所以“”是“”的必要不充分條件.故選:C9、A【解析】直接利用全稱命題的否定即可得到結(jié)論【詳解】因為命題p:,,所以:,.故選:A.10、C【解析】根據(jù)補集的定義可得結(jié)果.【詳解】因為全集,,所以根據(jù)補集的定義得,故選C.【點睛】若集合的元素已知,則求集合的交集、并集、補集時,可根據(jù)交集、并集、補集的定義求解二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】先求圓錐底面圓的半徑,再由直角三角形求得圓錐的高,代入公式計算圓錐的體積即可?!驹斀狻吭O(shè)圓錐底面半徑為r,則由題意得,解得.∴底面圓的面積為.又圓錐的高.故圓錐的體積.【點睛】此題考查圓錐體積計算,關(guān)鍵是找到底面圓半徑和高代入計算即可,屬于簡單題目。12、【解析】首先代入函數(shù)解析式求出,即可得到函數(shù)解析式,再代入求出函數(shù)值即可;【詳解】解:因為冪函數(shù)(是常數(shù))的圖象經(jīng)過點,所以,所以,所以,所以;故答案:13、【解析】如圖,取中點,中點,連接,由題可知,邊長均為1,則,中,,則,得,所以二面角的平面角即,在中,,則,所以.點睛:本題采用幾何法去找二面角,再進行求解.利用二面角的定義:公共邊上任取一點,在兩個面內(nèi)分別作公共邊的垂線,兩垂線的夾角就是二面角的平面角,找到二面角的平面角,再求出對應三角形的三邊,利用余弦定理求解(本題中剛好為直角三角形).14、53【解析】設(shè),則,從而求出,再根據(jù)的取值范圍,求出式子的最大值.【詳解】設(shè),因為為圓上一點,則,且,則(當且僅當時取得最大值),故答案為:53.【點睛】本題屬于圓與距離的應用問題,主要考查代數(shù)式的最值求法.解決此類問題一是要將題設(shè)條件轉(zhuǎn)化為相應代數(shù)式;二是要確定代數(shù)式中變量的取值范圍.15、【解析】因為,所以16、【解析】畫出函數(shù)的圖象,根據(jù)互不相等,且,我們令,我們易根據(jù)對數(shù)的運算性質(zhì),及c的取值范圍得到abc的取值范圍,即可求解【詳解】由函數(shù)函數(shù),可得函數(shù)的圖象,如圖所示:若a,b,c互不相等,且,令,則,,故,故答案為【點睛】本題主要考查了對數(shù)函數(shù)圖象與性質(zhì)的綜合應用,其中畫出函數(shù)圖象,利用圖象的直觀性,數(shù)形結(jié)合進行解答是解決此類問題的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及分析問題和解答問題的能力,屬于中檔試題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3).【解析】(1)利用兩角差的正切公式即可求解;(2)利用二倍角公式即可求解;(3)利用和差角公式即可求解.【詳解】(1)因為,,所以,即.(2)因為,可得,所以,,因此,,.(3)由,則,,得.因為,所以.由,則,,得,由以及,得.因為,又,所以.18、(1);(2);(3).【解析】(1)利用兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后結(jié)合正弦函數(shù)的對稱性得解;(2)令,換元,化函數(shù)為的二次函數(shù),求出,由此可值域;(3)由題意利用分離參數(shù)法、換元法、基本不等式先求出集合,根據(jù)(2)中范圍得出的范圍,再由可得的范圍【詳解】解:(1)令,得所以函數(shù)圖象的對稱軸方程為:(2)由(1)知,,當時,,∴,,即令,則,,由得,∴當時,有最小值,當時,有最大值1,所以當時,函數(shù)的值域為(3)當,不等式恒成立,因為時,,,所以,令,則,所以又,當且僅當即時取等號而,所以,即,所以又由(2)知,,當時,,所以,要使恒成立,只須使,故的取值范圍是【點睛】關(guān)鍵點點睛:本題考查兩角和的正弦公式,三角函數(shù)的對稱性,換元法求三角函數(shù)的值域,考查不等式恒成立問題,在同時出現(xiàn)和的函數(shù)中常常設(shè)換元轉(zhuǎn)化為二次函數(shù),再結(jié)合二次函數(shù)性質(zhì)求解.不等式恒成立問題仍然采用分離參數(shù)轉(zhuǎn)化為求函數(shù)的最值19、(1)最小正周期,最大值為;(2).【解析】把化簡為,(1)直接寫出最小正周期和最大值;(2)利用正弦函數(shù)的單調(diào)性直接求出單調(diào)遞增區(qū)間.【詳解】(1)的最小正周期;最大值為;(2)要求的單調(diào)遞增區(qū)間,只需,解得:,即的單調(diào)遞增區(qū)間為.20、(1)增區(qū)間為;減區(qū)間為(2)【解析】(1)利用正弦型函數(shù)的單調(diào)性直接求即可.(2)整體代換后利用正弦函數(shù)的性質(zhì)求值域.【小問1詳解】令,有,令,有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度海洋工程船舶保險合同2篇
- 2025年度國際技術(shù)轉(zhuǎn)移合作合同
- 2025年度智慧養(yǎng)老服務體系合同增補協(xié)議
- 2025年度公司股東借款及還款保障合同模板
- 2025版洗衣機租賃與維修保養(yǎng)一體化服務合同3篇
- 2025年度環(huán)保型包裝材料采購合同范本
- 2025年度全球物流服務外包合同規(guī)范
- 2025年環(huán)保型煤炭采購合同示范文本
- 2025年度股權(quán)轉(zhuǎn)讓與債務擔保合同模板
- 2025年度數(shù)據(jù)中心承建與智能化裝修服務合同4篇
- 《復旦大學》課件
- 2024版《安全生產(chǎn)法》考試題庫附答案(共90題)
- 疥瘡病人的護理
- 2024版《糖尿病健康宣教》課件
- 新員工三級安全教育考試試題參考答案
- 數(shù)學史簡介課件可編輯全文
- 中學安全辦2024-2025學年工作計劃
- 2024年鄉(xiāng)村振興(產(chǎn)業(yè)、文化、生態(tài))等實施戰(zhàn)略知識考試題庫與答案
- 網(wǎng)絡安全基礎(chǔ)知識入門教程
- AI智慧物流園區(qū)整體建設(shè)方案
- 2024年遼寧鐵道職業(yè)技術(shù)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
評論
0/150
提交評論