2025屆云南省大理州賓川縣第四高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2025屆云南省大理州賓川縣第四高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2025屆云南省大理州賓川縣第四高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2025屆云南省大理州賓川縣第四高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2025屆云南省大理州賓川縣第四高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆云南省大理州賓川縣第四高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的漸近線方程和離心率分別是A. B.C. D.2.設(shè)為坐標(biāo)原點(diǎn),直線與拋物線C:交于,兩點(diǎn),若,則的焦點(diǎn)坐標(biāo)為()A. B.C. D.3.某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中學(xué)生中抽取容量為50的樣本,則應(yīng)從高三年級抽取的學(xué)生數(shù)為()A.10 B.15C.20 D.304.已知函數(shù)的部分圖象如圖所示,且經(jīng)過點(diǎn),則()A.關(guān)于點(diǎn)對稱B.關(guān)于直線對稱C.為奇函數(shù)D.為偶函數(shù)5.已知點(diǎn)P是雙曲線上的動點(diǎn),過原點(diǎn)O的直線l與雙曲線分別相交于M、N兩點(diǎn),則的最小值為()A.4 B.3C.2 D.16.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點(diǎn),過F1的直線與雙曲線左、右兩支分別交于點(diǎn)P、Q.若,M為PQ的中點(diǎn),且,則雙曲線的離心率為()A. B.C. D.7.把直線繞原點(diǎn)逆時(shí)針轉(zhuǎn)動,使它與圓相切,則直線轉(zhuǎn)動的最小正角度A. B.C. D.8.下列雙曲線中,焦點(diǎn)在軸上且漸近線方程為的是A. B.C. D.9.命題“存在,使得”為真命題的一個(gè)充分不必要條件是()A. B.C. D.10.如圖,在三棱錐中,,,,點(diǎn)在平面內(nèi),且,設(shè)異面直線與所成角為,則的最大值為()A. B.C. D.11.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù),則方程表示焦點(diǎn)在軸上的橢圓的概率是A. B.C. D.12.直線在y軸上的截距為()A.-1 B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若直線與直線平行,則的值是________14.小明同學(xué)發(fā)現(xiàn)家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點(diǎn),經(jīng)過測量發(fā)現(xiàn),該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點(diǎn)位于直線PC上,則該雙曲線的焦距為____cm.15.已知函數(shù),,若,,使得,則實(shí)數(shù)a的取值范圍是______16.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)是圓上一個(gè)動點(diǎn),且線段的中點(diǎn)在的一條漸近線上,若,則的離心率的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,長軸長為,F(xiàn)為橢圓的右焦點(diǎn)(1)求橢圓C的方程;(2)經(jīng)過點(diǎn)的直線與橢圓C交于兩點(diǎn),,且以為直徑的圓經(jīng)過原點(diǎn),求直線的斜率;(3)點(diǎn)是以長軸為直徑的圓上一點(diǎn),圓在點(diǎn)處的切線交直線于點(diǎn),求證:過點(diǎn)且垂直于的直線過定點(diǎn)18.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,數(shù)列的前項(xiàng)和為,求不等式的解集.19.(12分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項(xiàng)和為,且,,成等比數(shù)列(1)求的通項(xiàng)公式(2)求數(shù)列的前n項(xiàng)和20.(12分)已知雙曲線的左、右焦點(diǎn)分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.21.(12分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值22.(10分)已知在平面直角坐標(biāo)系中,圓A:的圓心為A,過點(diǎn)B(,0)任作直線l交圓A于點(diǎn)C、D,過點(diǎn)B作與AD平行的直線交AC于點(diǎn)E.(1)求動點(diǎn)E的軌跡方程;(2)設(shè)動點(diǎn)E的軌跡與y軸正半軸交于點(diǎn)P,過點(diǎn)P且斜率為k1,k2的兩直線交動點(diǎn)E的軌跡于M、N兩點(diǎn)(異于點(diǎn)P),若,證明:直線MN過定點(diǎn).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求得其特征參數(shù)的值,再利用雙曲線漸近線方程公式和離心率定義分別計(jì)算即可.【詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【點(diǎn)睛】本題主要考查雙曲線的漸近線及離心率,屬于簡單題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解2、B【解析】根據(jù)題中所給的條件,結(jié)合拋物線的對稱性,可知,從而可以確定出點(diǎn)的坐標(biāo),代入方程求得的值,進(jìn)而求得其焦點(diǎn)坐標(biāo),得到結(jié)果.【詳解】因?yàn)橹本€與拋物線交于兩點(diǎn),且,根據(jù)拋物線的對稱性可以確定,所以,代入拋物線方程,求得,所以其焦點(diǎn)坐標(biāo)為,故選:B.【點(diǎn)睛】該題考查的是有關(guān)圓錐曲線的問題,涉及到的知識點(diǎn)有直線與拋物線的交點(diǎn),拋物線的對稱性,點(diǎn)在拋物線上的條件,拋物線的焦點(diǎn)坐標(biāo),屬于簡單題目.3、C【解析】根據(jù)抽取比例乘以即可求解.【詳解】由題意可得應(yīng)從高三年級抽取的學(xué)生數(shù)為,故選:C.4、D【解析】根據(jù)圖象求得函數(shù)解析式,結(jié)合三角函數(shù)的圖象與性質(zhì),逐項(xiàng)判定,即可求解.【詳解】由題意,可得,根據(jù)圖形走勢,可得,解得,令,可得,所以,由,所以A不正確;由,可得不是函數(shù)的對稱軸,所以B不正確;由,此時(shí)函數(shù)為非奇非偶函數(shù),所以C不正確;由為偶函數(shù),所以D正確.故選:D.5、C【解析】根據(jù)雙曲線的對稱性可得為的中點(diǎn),即可得到,再根據(jù)雙曲線的性質(zhì)計(jì)算可得;【詳解】解:根據(jù)雙曲線的對稱性可知為的中點(diǎn),所以,又在上,所以,當(dāng)且僅當(dāng)在雙曲線的頂點(diǎn)時(shí)取等號,所以故選:C6、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達(dá)出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因?yàn)镸為PQ的中點(diǎn),且,所以△為等腰三角形,即,因?yàn)?,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D7、B【解析】根據(jù)直線過原點(diǎn)且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計(jì)算最小旋轉(zhuǎn)角【詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時(shí)轉(zhuǎn)動最小∴最小正角為.故選B.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題8、C【解析】焦點(diǎn)在軸上的是C和D,漸近線方程為,故選C考點(diǎn):1.雙曲線的標(biāo)準(zhǔn)方程;2.雙曲線的簡單幾何性質(zhì)9、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因?yàn)椤按嬖?,使得”為真命題,所以,因此上述命題得個(gè)充分不必要條件是.故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.10、D【解析】設(shè)線段的中點(diǎn)為,連接,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),證明出平面,然后以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè),其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設(shè)線段的中點(diǎn)為,連接,,為的中點(diǎn),則,,則,,同理可得,,,平面,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)?,所以,為等邊三角形,故為的中點(diǎn),平面,平面,則,,,平面,以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,因?yàn)槭沁呴L為的等邊三角形,為的中點(diǎn),則,則、、、,由于點(diǎn)在平面內(nèi),可設(shè),其中,且,從而,因?yàn)?,則,所以,,故當(dāng)時(shí),有最大值,即,故,即有最大值,所以,.故選:D.【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.11、D【解析】若方程表示焦點(diǎn)在軸上的橢圓,則,解得,,故方程表示焦點(diǎn)在軸上的橢圓的概率是,故選D.12、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先通過討論分成斜率存在和不存在兩種情況,然后再按照兩直線平行的判定方法求解即可.【詳解】由已知可得,當(dāng)時(shí),兩直線分別為和,此時(shí),兩直線不平行;當(dāng)時(shí),要使得兩直線平行,即,解得,.故答案為:14、【解析】建立直角坐標(biāo)系,利用代入法、雙曲線的對稱性進(jìn)行求解即可.【詳解】建立如圖所示的直角坐標(biāo)系,設(shè)雙曲線的標(biāo)準(zhǔn)方程為:,因?yàn)樵撾p曲線的漸近線相互垂直,所以,即,因?yàn)锳B=60cm,PC=20cm,所以點(diǎn)的坐標(biāo)為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:15、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當(dāng)時(shí),,所以在上單調(diào)遞減,所以,即,由,得,當(dāng)時(shí),,所以在上單調(diào)遞增,所以,即,因?yàn)?,,使得,所以,解得,故答案為?6、【解析】設(shè),,因?yàn)辄c(diǎn)是線段中點(diǎn),所以有,代入坐標(biāo)求出點(diǎn)的軌跡為圓,因?yàn)辄c(diǎn)在漸近線上,所以圓與漸近線有公共點(diǎn),利用點(diǎn)到直線的距離求出臨界狀態(tài)下漸近線的斜率,數(shù)形結(jié)合求出有公共點(diǎn)時(shí)漸近線斜率的范圍,從而求出離心率的范圍.【詳解】解:設(shè),,因?yàn)辄c(diǎn)是線段的中點(diǎn),所以有,即有,因?yàn)辄c(diǎn)在圓上,所以滿足:,代入可得:,即,所以點(diǎn)的軌跡是以為圓心,以1為半徑的圓,如圖所示:因?yàn)辄c(diǎn)在漸近線上,所以圓與漸近線有公共點(diǎn),當(dāng)兩條漸近線與圓恰好相切時(shí)為臨界點(diǎn),則:圓心到漸近線的距離為,因?yàn)?,所以,即,且,所以,此時(shí),,當(dāng)時(shí),漸近線與圓有公共點(diǎn),.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)由題意中離心率和長軸長可求出,即可求出橢圓方程.(2)設(shè)出與的坐標(biāo)即直線的方程,把直線與橢圓方程進(jìn)行聯(lián)立寫出韋達(dá)定理,由題意以為直徑圓經(jīng)過原點(diǎn)可得,化簡即可求出直線的斜率.(3)由題意可得圓的方程,設(shè),由和直線的方程化簡,即可得到答案.【小問1詳解】,,橢圓C的方程為.【小問2詳解】由題意知直線的斜率存在且不為0,設(shè)直線的方程為.設(shè).把直線的方程與橢圓的方程進(jìn)行聯(lián)立得:..由以為直徑圓經(jīng)過原點(diǎn)知,..經(jīng)檢驗(yàn),滿足,所以.【小問3詳解】由題意可得圓的方程為,設(shè),由得.①.當(dāng)時(shí),,直線的方程為.直線過橢圓的右焦點(diǎn).當(dāng)時(shí),直線的斜率為且過,②把①代入②中得.故直線過橢圓的右焦點(diǎn).綜上所述,直線過橢圓的右焦點(diǎn).18、(1)(2)【解析】(1)利用與的關(guān)系求解即可;(2)首先利用裂項(xiàng)求和得到,從而得到,再解不等式即可.【小問1詳解】令,則,當(dāng)時(shí),,當(dāng)時(shí),也符合上式,即數(shù)列的通項(xiàng)公式為.【小問2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.19、(1);(2)【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式,分別表示出與,由等比中項(xiàng)定義即可求得首項(xiàng),進(jìn)而求得的通項(xiàng)公式(2)根據(jù)等差數(shù)列的首項(xiàng)與公差,求出的前n項(xiàng)和,進(jìn)而可知,再用裂項(xiàng)法可求得【詳解】(1)由題意,得,,所以由,得,解得,所以,即(2)由(1)知,則,,【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的應(yīng)用,等比中項(xiàng)的定義,裂項(xiàng)法求數(shù)列前n項(xiàng)和的簡單應(yīng)用,屬于基礎(chǔ)題20、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點(diǎn)的坐標(biāo),再用兩點(diǎn)之間的距離公式即可求得;(2)根據(jù)(1)中所求,利用兩點(diǎn)之間的距離公式,即可求得三角形周長.【小問1詳解】設(shè)點(diǎn)的坐標(biāo)分別為,由題意知雙曲線的左、右焦點(diǎn)坐標(biāo)分別為、,直線的方程,與聯(lián)立得,解得,代入的方程為分別解得.所以.【小問2詳解】由(1)知,,,所以△的周長為.21、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過點(diǎn)垂直于平面的直線為軸建立空間直角坐標(biāo)系.求出平面的一個(gè)法向量、平面的法向量,由二面角的空間向量求法可得答案.【小問1詳解】因?yàn)樗倪呅问堑妊菪?,,所以,所以,即因?yàn)槠矫妫?,又因?yàn)椋云矫?,因?yàn)槠矫妫云矫嫫矫妗拘?詳解】以為坐標(biāo)原點(diǎn),以,所在直線分別為,軸,以過點(diǎn)垂直于平面的直線為軸建立如圖所示的空間直角坐標(biāo)系設(shè),則,所以,,,由(1)可知平面的一個(gè)法向量為設(shè)平面的法向量為,因?yàn)?,,所以得令,則,,所以,則,所以平面與平面的夾角的余弦值為.22、(1)(2)證明見解析【解析】(1)作出圖象,易知|EB|+|EA|為定值,根據(jù)橢圓定義即可判斷點(diǎn)E的軌跡,從而寫出其軌跡方程;(2)設(shè),當(dāng)直線MN斜率存在時(shí),設(shè)直線MN的方程為:,聯(lián)立MN方程和E的軌跡方程得根與系數(shù)的關(guān)系,根據(jù)解出k與m的關(guān)系即可以判斷MN過定點(diǎn);最后再考慮MN斜率不存在時(shí)是否也過該定點(diǎn)即可.【小問1詳解】由圓A:可得(,∴圓心A(-,0),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論