版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
內(nèi)蒙古平煤高級中學、元寶山一中2025屆高一上數(shù)學期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下圖是函數(shù)的部分圖象,則()A. B.C. D.2.已知,則A.-2 B.-1C. D.23.已知冪函數(shù)的圖象過點(4,2),則()A.2 B.4C.2或-2 D.4或-44.如果“,”是“”成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.不充分也不必要條件5.對于用斜二測畫法畫水平放置的圖形的直觀圖來說,下列描述不正確的是A.三角形的直觀圖仍然是一個三角形 B.的角的直觀圖會變?yōu)榈慕荂.與軸平行的線段長度變?yōu)樵瓉淼囊话?D.原來平行的線段仍然平行6.若函數(shù)存在兩個零點,且一個為正數(shù),另一個為負數(shù),則的取值范圍為A. B.C. D.7.“角小于”是“角是第一象限角”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知集合,則()A. B.C. D.9.直線與圓交點的個數(shù)為A.2個 B.1個C.0個 D.不確定10.表示不超過實數(shù)的最大整數(shù),是方程的根,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則上的最小值是_________.12.函數(shù)的值域為_____________13.每一個聲音都是由純音合成的,純音的數(shù)學模型是函數(shù).若的部分圖象如圖所示,則的解析式為________.14.兩條平行直線與的距離是__________15.經(jīng)過,兩點的直線的傾斜角是__________.16.若函數(shù)在單調(diào)遞增,則實數(shù)的取值范圍為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,邊長為的正方形所在平面與正三角形所在平面互相垂直,分別為的中點.(1)求四棱錐的體積;(2)求證:平面;(3)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結(jié)論;若不存在,請說明理由.18.如圖所示,某居民小區(qū)內(nèi)建一塊直角三角形草坪,直角邊米,米,扇形花壇是草坪的一部分,其半徑為20米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設兩條小路和,考慮到小區(qū)整體規(guī)劃,要求M、N在斜邊上,O在弧上(點O異于D,E兩點),,.(1)設,記,求的表達式,并求出此函數(shù)的定義域.(2)經(jīng)核算,兩條路每米鋪設費用均為400元,如何設計的大小,使鋪路的總費用最低?并求出最低總費用.19.如圖,在正方體中,點分別是棱的中點.求證:(1)平面;(2)平面20.已知二次函數(shù),且是函數(shù)的零點.(1)求解析式,并解不等式;(2)若,求函數(shù)的值域21.設函數(shù)且是奇函數(shù)求常數(shù)k值;若,試判斷函數(shù)的單調(diào)性,并加以證明;若已知,且函數(shù)在區(qū)間上的最小值為,求實數(shù)m的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由圖象求出函數(shù)的周期,進而可得的值,然后逆用五點作圖法求出的值即可求解.【詳解】解:由圖象可知,函數(shù)的周期,即,所以,不妨設時,由五點作圖法,得,所以,所以故選:B.2、B【解析】,,則,故選B.3、B【解析】設冪函數(shù)代入已知點可得選項.【詳解】設冪函數(shù)又函數(shù)過點(4,2),,故選:B.4、A【解析】利用充分條件和必要條件的定義判斷.【詳解】當,時,,故充分;當時,,,故不必要,故選:A5、B【解析】根據(jù)斜二測畫法,三角形的直觀圖仍然是一個三角形,故正確;的角的直觀圖不一定的角,例如也可以為,所以不正確;由斜二測畫法可知,與軸平行的線段長度變?yōu)樵瓉淼囊话?故正確;根據(jù)斜二測畫法的作法可得原來平行的線段仍然平行,故正確,故選B.6、C【解析】根據(jù)題意畫出函數(shù)圖像,由圖像即可分析出由一個正零點,一個負零點a的范圍【詳解】如圖,若存在兩個零點,且一個為正數(shù),另一個為負數(shù),則,故選【點睛】本題考查了絕對值函數(shù)及零點的簡單應用,屬于基礎題7、D【解析】利用特殊值法結(jié)合充分、必要條件的定義判斷可得出結(jié)論.【詳解】若角小于,取,此時,角不是第一象限角,即“角小于”“角是第一象限角”;若角是第一象限角,取,此時,,即“角小于”“角是第一象限角”.因此,“角小于”是“角是第一象限角”的既不充分也不必要條件.故選:D.8、A【解析】對集合B中的分類討論分析,再根據(jù)集合間的關(guān)系判斷即可【詳解】當時,,當時,,當時,,所以,或,或因為,所以.故選:A9、A【解析】化為點斜式:,顯然直線過定點,且定點在圓內(nèi)∴直線與圓相交,故選A10、B【解析】先求出函數(shù)的零點的范圍,進而判斷的范圍,即可求出.【詳解】由題意可知是的零點,易知函數(shù)是(0,)上的單調(diào)遞增函數(shù),而,,即所以,結(jié)合性質(zhì),可知.故選B.【點睛】本題考查了函數(shù)的零點問題,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】將的最小值轉(zhuǎn)化為求的最小值,然后展開后利用基本不等式求得其最小值【詳解】解:因為,且,,當且僅當時,即,時等號成立;故答案為:12、【解析】利用二倍角余弦公式可得令,結(jié)合二次函數(shù)的圖象與性質(zhì)得到結(jié)果.【詳解】由題意得:令,則∵在上單調(diào)遞減,∴的值域為:故答案為:【點睛】本題給出含有三角函數(shù)式的“類二次”函數(shù),求函數(shù)的值域.著重考查了三角函數(shù)的最值和二次函數(shù)在閉區(qū)間上的值域等知識,屬于中檔題13、【解析】結(jié)合正弦函數(shù)的性質(zhì)確定參數(shù)值.【詳解】由圖可知,最小正周期,所以,所以.故答案為:.【點睛】本題考查由三角函數(shù)圖象確定其解析式,掌握正弦函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.14、【解析】直線與平行,,得,直線,化為,兩平行線距離為,故答案為.15、【解析】經(jīng)過,兩點的直線的斜率是∴經(jīng)過,兩點的直線的傾斜角是故答案為16、【解析】根據(jù)復合函數(shù)單調(diào)性性質(zhì)將問題轉(zhuǎn)化二次函數(shù)單調(diào)性問題,注意真數(shù)大于0.【詳解】令,則,因為為減函數(shù),所以在上單調(diào)遞增等價于在上單調(diào)遞減,且,即,解得.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)存在,為中點,證明見解析.【解析】(1)由等腰三角形三線合一性質(zhì)和面面垂直性質(zhì)定理可證得平面,由棱錐體積公式可求得結(jié)果;(2)連結(jié)交于點,由三角形中位線性質(zhì)可證得,由線面平行判定定理可得到結(jié)論;(3)當為中點時,由正方形的性質(zhì)、線面垂直的性質(zhì),結(jié)合線面垂直的判定可證得平面,由面面垂直的判定定理可證得結(jié)論.【詳解】(1)為中點,為正三角形,.平面平面,平面平面,平面,平面.,,.(2)證明:連結(jié)交于點,連結(jié).由四邊形為正方形知點為的中點,又為的中點,,平面,平面,平面.(3)存在點,當為中點時,平面平面.證明如下:因為四邊形是正方形,為的中點,,由(1)知:平面,平面,,又,平面.平面,平面平面.【點睛】關(guān)鍵點點睛:本題第三問考查了與面面垂直有關(guān)的存在性問題的處理,解題關(guān)鍵是能夠根據(jù)平面確定只要在上,必有,由此只需找到與面中的另一條與相交的直線垂直即可,進而鎖定的位置.18、(1),;(2),.【解析】(1)過作的垂線交與兩點,求出,即可求出的表達式,并求出此函數(shù)的定義域.(2)利用輔助角公式化簡,即可得出結(jié)果.【詳解】(1)如圖,過作的垂線交與兩點,則,,,,,則,,所以,,(2),,當,即時,總費用最少為.19、(1)證明見解析(2)證明見解析【解析】(1)易證得四邊形為平行四邊形,可知,由線面平行的判定可得結(jié)論;(2)由正方形性質(zhì)和線面垂直性質(zhì)可證得,,由線面垂直的判定可得平面,由可得結(jié)論.【小問1詳解】分別為的中點,,,且,四邊形為平行四邊形,,又平面,平面,平面.【小問2詳解】四邊形為正方形,;平面,平面,,又,平面,20、(1);;(2).【解析】(1)根據(jù)的零點求出,的值,得出函數(shù)的解析式,然后解二次不等式即可;(2)利用換元法,令,則,然后結(jié)合二次函數(shù)的圖象及性質(zhì)求出最值.【詳解】(1)由題意得,解得所以當時,即,.(2)令,則,,當時,有最小值,當時,有最大值,故.【點睛】本題考查二次函數(shù)的解析式求解、值域問題以及一元二次不等式的解法,較簡單.解答時只要抓住二次方程、二次函數(shù)、二次不等式之間的關(guān)系,則問題便可迎刃而解.21、(1);(2)在上為單調(diào)增函數(shù);(3)【解析】(1)根據(jù)奇函數(shù)的定義,恒成立,可得值,也可用奇函數(shù)的必要條件求出值,然后用奇函數(shù)定義檢驗;(2)判斷單調(diào)性,一般由單調(diào)性定義,設,判斷的正負(因式分解后判別),可得結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度新能源車輛租賃與運營合同
- 2024幼兒園保育員崗位聘用與薪酬待遇合同范本3篇
- 2024年版國際物流運輸合同(含多式聯(lián)運)
- 2024年購物中心導視系統(tǒng)設計合同3篇
- 「2024年度」智能穿戴設備研發(fā)合同
- 上海摩托車租賃協(xié)議(2024年新版)3篇
- 2024年職場勞動協(xié)議標準格式版B版
- 2024版苗圃采購合同
- 矯形鞋墊知識培訓課件
- 2024整合勞務承包工程合同范本3篇
- 2024股權(quán)融資計劃
- 2025北京昌平初二(上)期末數(shù)學真題試卷(含答案解析)
- 西式面點師試題與答案
- 廣東省廣州市海珠區(qū)2023-2024學年九年級上學期期末語文試題(答案)
- 小區(qū)智能化系統(tǒng)工程施工組織設計方案
- 單位內(nèi)部治安保衛(wèi)制度
- 【8物(科)期末】合肥市蜀山區(qū)2023-2024學年八年級上學期期末物理試題
- GB/T 44990-2024激光熔覆修復層界面結(jié)合強度試驗方法
- ps經(jīng)典課程-海報設計(第六講)
- 鋼結(jié)構(gòu)連廊專項吊裝方案(通過專家論證)
- 50MWp漁光互補光伏電站項目錘樁施工方案
評論
0/150
提交評論