版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省株洲市醴陵市第二中學(xué)、醴陵市第四中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為兩條不同的直線,為兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,則B.若,則C.若,則D.若,則2.等比數(shù)列,,,成公差不為0的等差數(shù)列,,則數(shù)列的前10項(xiàng)和()A. B.C. D.3.下列說(shuō)法錯(cuò)誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實(shí)數(shù)m的最大值為2021C.“”是“函數(shù)在內(nèi)有零點(diǎn)”的必要不充分條件D.已知,且,則的最小值為94.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用5.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對(duì)立事件為()A.至多兩件次品 B.至多一件次品C.沒(méi)有次品 D.至少一件次品6.已知p:,那么p的一個(gè)充分不必要條件是()A. B.C. D.7.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.8.已知雙曲線(,)的左,右焦點(diǎn)分別為,.若雙曲線右支上存在點(diǎn),使得與雙曲線的一條漸近線垂直并相交于點(diǎn),且,則雙曲線的漸近線方程為()A. B.C. D.9.已知拋物線:的焦點(diǎn)為F,準(zhǔn)線l上有兩點(diǎn)A,B,若為等腰直角三角形且面積為8,則拋物線C的標(biāo)準(zhǔn)方程是()A. B.C.或 D.10.如圖所示,過(guò)拋物線的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C.若,且,則拋物線的方程為()A. B.C. D.11.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.12.在長(zhǎng)方體中,()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人獨(dú)立地破譯一份密碼,已知各人能破譯的概率分別為,則密碼被成功破譯的概率_________14.若展開(kāi)式的二項(xiàng)式系數(shù)之和是64,則展開(kāi)式中的常數(shù)項(xiàng)的值是__________.15.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為_(kāi)_____16.若函數(shù)在(0,+∞)內(nèi)有且只有一個(gè)零點(diǎn),則a的值為_(kāi)____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓C的圓心在坐標(biāo)原點(diǎn),且過(guò)點(diǎn)M()(1)求圓C的方程;(2)已知點(diǎn)P是圓C上的動(dòng)點(diǎn),試求點(diǎn)P到直線的距離的最小值;18.(12分)已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓C上,若的面積為,求點(diǎn)P的坐標(biāo)19.(12分)設(shè)數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(3)已知數(shù)列,設(shè),求數(shù)列的前項(xiàng)和.20.(12分)已知等差數(shù)列的前n項(xiàng)和為Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比數(shù)列,求k21.(12分)已知橢圓的離心率為,短軸長(zhǎng)為2(1)求橢圓的方程;(2)設(shè)過(guò)點(diǎn)且斜率為的直線與橢圓交于不同的兩點(diǎn),,求當(dāng)?shù)拿娣e取得最大值時(shí)的值22.(10分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動(dòng)點(diǎn).(1)當(dāng)時(shí),求證平面;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)空間里面直線與平面、平面與平面位置關(guān)系的相關(guān)定理逐項(xiàng)判斷即可.【詳解】A,若,則或異面,故該選項(xiàng)錯(cuò)誤;B,若,則或相交,故該選項(xiàng)錯(cuò)誤;C,若,則α,β不一定垂直,故該選項(xiàng)錯(cuò)誤;D,若,則利用面面垂直的性質(zhì)可得,故該選項(xiàng)正確.故選:D.2、C【解析】先設(shè)等比數(shù)列的公比為,結(jié)合條件可知,由等差中項(xiàng)可知,利用等比數(shù)列的通項(xiàng)公式進(jìn)行化簡(jiǎn)求出,最后利用分組求和法,以及等比數(shù)列、等差數(shù)列的求和公式,即可求出數(shù)列的前10項(xiàng)和.【詳解】設(shè)等比數(shù)列的公比為,,,成公差不為0的等差數(shù)列,則,,都不相等,,且,,,,即,解得:或(舍去),,所以數(shù)列的前10項(xiàng)和:.故選:C.3、C【解析】對(duì)于A:用存在量詞否定全稱命題,直接判斷;對(duì)于B:根據(jù)充分不必要條件直接判斷;對(duì)于C:判斷出“”是“函數(shù)在內(nèi)有零點(diǎn)”的充分不必要條件,即可判斷;對(duì)于D:利用基本不等式求最值.【詳解】對(duì)于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對(duì)于B:若“”是“或”的充分不必要條件,所以,即實(shí)數(shù)m的最大值為2021.故B正確;對(duì)于C:“函數(shù)在內(nèi)有零點(diǎn)”,則,解得:或,所以“”是“函數(shù)在內(nèi)有零點(diǎn)”的充分不必要條件.故C錯(cuò)誤;對(duì)于D:已知,且,所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào))故D正確.故選:C4、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒(méi)有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.5、C【解析】利用對(duì)立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對(duì)立事件的定義,事件=“至少有一件次品”其對(duì)立事件為:“兩件正品”,即”沒(méi)有次品“故選:C6、C【解析】按照充分不必要條件依次判斷4個(gè)選項(xiàng)即可.【詳解】A選項(xiàng):,錯(cuò)誤;B選項(xiàng):,錯(cuò)誤;C選項(xiàng):,,正確;D選項(xiàng):,錯(cuò)誤.故選:C.7、A【解析】由題可設(shè),結(jié)合條件可得,即求.【詳解】∵圓心在上,∴可設(shè)圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.8、B【解析】利用漸近線方程和直線解出Q點(diǎn)坐標(biāo),再由得P點(diǎn)坐標(biāo),代入雙曲線方程得到a、b、c的齊次式可解.【詳解】如圖,因?yàn)榕c漸近線垂直所以的斜率為,方程為解的Q的坐標(biāo)為設(shè)P點(diǎn)坐標(biāo)為則,因?yàn)?,所以,得點(diǎn)P坐標(biāo)為,代入得:所以,即所以漸近線方程為故選:B.9、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當(dāng)時(shí),,解得;當(dāng)或時(shí),,解得,所以拋物線的方程是或.故選:C.10、A【解析】分別過(guò)點(diǎn)作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn),,設(shè),推出;根據(jù),進(jìn)而推導(dǎo)出,結(jié)合拋物線定義求出;最后由相似比推導(dǎo)出,即可求出拋物線的方程.【詳解】如圖分別過(guò)點(diǎn)作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn),,設(shè)與交于點(diǎn).設(shè),,,由拋物線定義得:,故在直角三角形中,,,,,,,∥,,,即,,所以拋物線的方程為.故選:A11、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.12、D【解析】根據(jù)向量的運(yùn)算法則得到,帶入化簡(jiǎn)得到答案.【詳解】在長(zhǎng)方體中,易知,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,由相互獨(dú)立事件概率的乘法公式可得密碼沒(méi)有被破譯的概率,進(jìn)而由對(duì)立事件的概率性質(zhì)分析可得答案【詳解】解:根據(jù)題意,甲乙兩人能成功破譯的概率分別是,,則密碼沒(méi)有被破譯,即甲乙都沒(méi)有成功破譯密碼概率,故該密碼被成功破譯的概率故答案為:14、【解析】首先利用展開(kāi)式的二項(xiàng)式系數(shù)和是求出,然后即可求出二項(xiàng)式的常數(shù)項(xiàng).【詳解】由題知展開(kāi)式的二項(xiàng)式系數(shù)之和是,故有,可得,知當(dāng)時(shí)有.故展開(kāi)式中的常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查了利用二項(xiàng)式的系數(shù)和求參數(shù),求二項(xiàng)式的常數(shù)項(xiàng),屬于基礎(chǔ)題.15、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.16、a=3【解析】對(duì)函數(shù)進(jìn)行求導(dǎo),分類討論函數(shù)單調(diào)性,根據(jù)單調(diào)性結(jié)合已知可以求出a的值.【詳解】∵函數(shù)在(0,+∞)內(nèi)有且只有一個(gè)零點(diǎn),∴f′(x)=2x(3x﹣a),x∈(0,+∞),①當(dāng)a≤0時(shí),f′(x)=2x(3x﹣a)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f(0)=1,f(x)在(0,+∞)上沒(méi)有零點(diǎn),舍去;②當(dāng)a>0時(shí),f′(x)=2x(3x﹣a)>0的解為x,∴f(x)在(0,)上遞減,在(,+∞)遞增,又f(x)只有一個(gè)零點(diǎn),∴f()1=0,解得a=3故答案為:a=3【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究已知函數(shù)的零點(diǎn)求參數(shù)取值問(wèn)題,考查了分類討論和數(shù)學(xué)運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由圓C的圓心在坐標(biāo)原點(diǎn),且過(guò)點(diǎn),求得圓的半徑,利用圓的標(biāo)準(zhǔn)方程,即可求解;(2)由點(diǎn)到直線的距離公式,求得圓心到直線l的距離為,進(jìn)而得到點(diǎn)P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標(biāo)原點(diǎn),且過(guò)點(diǎn),所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點(diǎn)睛】本題主要考查了圓標(biāo)準(zhǔn)方程的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟練應(yīng)用直線與圓的位置關(guān)系合理轉(zhuǎn)化是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.18、(1)(2)或或或【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)三角形的面積列方程,化簡(jiǎn)求得點(diǎn)的坐標(biāo).【小問(wèn)1詳解】設(shè)橢圓C的焦距為,由題意有,得,,故橢圓C的標(biāo)準(zhǔn)方程為;【小問(wèn)2詳解】設(shè)點(diǎn)P的坐標(biāo)為,由的面積為,有,得,有,得,故點(diǎn)P的坐標(biāo)為或或或19、(1)(2)證明見(jiàn)解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項(xiàng)、公比即可得解;(2)化簡(jiǎn)后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯(cuò)位相減法求出數(shù)列的和.【小問(wèn)1詳解】設(shè)公比為,由條件可知,,所以;【小問(wèn)2詳解】,又,所以,所以數(shù)列是以為首項(xiàng),為公差等差數(shù)列,所以,所以.【小問(wèn)3詳解】,,兩式相減可得,,.20、(1)Sn=n2(2)11【解析】(1)由等差數(shù)列前n項(xiàng)和公式與下標(biāo)和性質(zhì)先求,然后結(jié)合可解;(2)由(1)中結(jié)論和已知列方程可解.【小問(wèn)1詳解】由,解得,又∵,∴,,∴【小問(wèn)2詳解】∵S3,S17–S16,Sk成等比數(shù)列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1121、(1);(2).【解析】(1)由短軸長(zhǎng)得,由離心率處也的關(guān)系,從而可求得,得橢圓方程;(2)設(shè),,直線的方程為,代入橢圓方程應(yīng)用韋達(dá)定理得,由弦長(zhǎng)公式得弦長(zhǎng),求出原點(diǎn)到直線的距離,得出三角形面積為的函數(shù),用換元法,基本不等式求得最大值,得值【詳解】解:(1)由題意得,,所以,,橢圓的方程為(2)直線的方程為,代入橢圓的方程,整理得由題意,,設(shè),則,弦長(zhǎng),點(diǎn)到直線的距離,所以的面積,令,則,當(dāng)且僅當(dāng)時(shí)取等號(hào).所以,對(duì)應(yīng)的,可解得,滿足題意22、(1)證明見(jiàn)解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過(guò)作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鈑金展柜研發(fā)與市場(chǎng)推廣合作合同2篇
- 二零二五年度高品質(zhì)實(shí)木地板全球購(gòu)銷(xiāo)合同范本3篇
- 二零二五年掘進(jìn)機(jī)操作人員安全教育與培訓(xùn)合同3篇
- 二零二五版房地產(chǎn)股權(quán)托管及資產(chǎn)增值管理合同3篇
- 二零二五年度高級(jí)別墅房產(chǎn)出售合同3篇
- 2025年高性能材料采購(gòu)與合作研發(fā)合同3篇
- 二零二五版健身俱樂(lè)部健身教練就業(yè)保障與福利合同3篇
- 2024新勞動(dòng)法對(duì)人力資源績(jī)效評(píng)估與反饋合同3篇
- 專業(yè)化生產(chǎn)流程服務(wù)協(xié)議2024版版B版
- 2024版公共廁所管理承包合同3篇
- 2022-2024北京初三二模英語(yǔ)匯編:話題作文
- 《阻燃材料與技術(shù)》-顏龍 習(xí)題解答
- 人教版八年級(jí)英語(yǔ)上冊(cè)Unit1-10完形填空閱讀理解專項(xiàng)訓(xùn)練
- 2024年湖北省武漢市中考英語(yǔ)真題(含解析)
- GB/T 44561-2024石油天然氣工業(yè)常規(guī)陸上接收站液化天然氣裝卸臂的設(shè)計(jì)與測(cè)試
- 《城市綠地設(shè)計(jì)規(guī)范》2016-20210810154931
- 網(wǎng)球場(chǎng)經(jīng)營(yíng)方案
- 2024年公司保密工作制度(四篇)
- 重慶市康德卷2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析
- 建筑結(jié)構(gòu)課程設(shè)計(jì)成果
- 雙梁橋式起重機(jī)小車(chē)改造方案
評(píng)論
0/150
提交評(píng)論