




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣西柳州鐵路第一中學2025屆高二上數(shù)學期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.2.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.223.若函數(shù)在上為單調(diào)減函數(shù),則的取值范圍()A. B.C. D.4.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準線的距離為3,則AF的中點到準線的距離為()A.1 B.2C.3 D.45.若直線的斜率為,則的傾斜角為()A. B.C. D.6.下列函數(shù)求導運算正確的個數(shù)為()①;②;③;④.A.1 B.2C.3 D.47.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.8.為了解義務教育階段學校對雙減政策的落實程度,某市教育局從全市義務教育階段學校中隨機抽取了6所學校進行問卷調(diào)查,其中有4所小學和2所初級中學,若從這6所學校中再隨機抽取兩所學校作進一步調(diào)查,則抽取的這兩所學校中恰有一所小學的概率是()A. B.C. D.9.等比數(shù)列的各項均為正數(shù),且,則=()A.8 B.16C.32 D.6410.以,為焦點,且經(jīng)過點的橢圓的標準方程為()A. B.C. D.11.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條12.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若“”是真命題,則實數(shù)的最小值為_____________.14.已知等比數(shù)列中,則q=___15.已知數(shù)列滿足,,則數(shù)列的前n項和______16.如果橢圓上一點P到焦點的距離等于6,則點P到另一個焦點的距離為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的左右焦為,,點是該橢圓上任意一點,當軸時,,(1)求橢圓C的標準方程;(2)記,求實數(shù)m的最大值18.(12分)在①,②是與的等比中項,③這三個條件中任選一個,補充在下面的問題中,并解答問題:已知數(shù)列{}的前n項和為,,且滿足___(1)求數(shù)列{}的通項公式;(2)求數(shù)列{}前n項和注:如果選擇多個條件分別解答,按第一個解答計分19.(12分)設等差數(shù)列的各項均為整數(shù),且滿足對任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項公式為,數(shù)列是否具有性質(zhì)?并說明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對于給定的,具有性質(zhì)的數(shù)列是有限個,還是可以無窮多個?(直接寫出結論)20.(12分)求下列函數(shù)導數(shù):(1);(2);21.(12分)已知橢圓的離心率為,右焦點F到上頂點的距離為.(1)求橢圓的方程;(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得點C()在線段AB的中垂線上?若存在,求出直線l:若不存在,說明理曲.22.(10分)已知命題p:“,”為假命題,命題q:“實數(shù)滿足”.若是真命題,是假命題,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)斜率的取值范圍,結合來求得傾斜角的取值范圍.【詳解】設傾斜角為,因為,且,所以.故選:B2、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.3、A【解析】分析可知對任意的恒成立,利用參變量分離法結合二次函數(shù)的基本性質(zhì)可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,則,當時,在上單調(diào)遞減,在上單調(diào)遞減,所以,,故.故選:A.4、C【解析】結合拋物線的定義求得,由此求得線段的中點到準線的距離【詳解】拋物線方程為,則,由于中點到準線的距離為3,結合拋物線的定義可知,即,所以線段的中點到準線的距離為.故選:C5、C【解析】設直線l傾斜角為,根據(jù)題意得到,即可求解.【詳解】設直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.6、A【解析】根據(jù)導數(shù)的運算法則和導數(shù)的基本公式計算后即可判斷【詳解】解:①,故錯誤;②,故正確;③,故錯誤;④,故錯誤.所以求導運算正確的個數(shù)為1.故選:A.7、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結果.【詳解】.故選:D8、A【解析】由組合知識結合古典概型概率公式求解即可.【詳解】從這6所學校中隨機抽取兩所學校的情況共有種,這兩所學校中恰有一所小學的情況共有種,則其概率為.故選:A9、B【解析】由等比數(shù)列的下標和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.10、B【解析】根據(jù)焦點在x軸上,c=1,且過點,用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【詳解】因為焦點在x軸上,所以C不正確;又因為c=1,故排除D;將代入得,故A錯誤,所以選B.故選:B11、D【解析】求得圓心坐標分別為,半徑分別為,根據(jù)圓圓的位置關系的判定方法,得出兩圓的位置關系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.12、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).14、3【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù)等比數(shù)列的通項公式求得答案.【詳解】等比數(shù)列中,故,,所以,故答案為:315、【解析】先求出,利用裂項相消法求和.【詳解】因為數(shù)列滿足,,所以數(shù)列為公差d=2的等差數(shù)列,所以,所以所以.故答案為:.16、14【解析】根據(jù)橢圓的定義及橢圓上一點P到焦點的距離等于6,可得的長.【詳解】解:根據(jù)橢圓的定義,又橢圓上一點P到焦點的距離等于6,,故,故答案:.【點睛】本題主要考查橢圓的定義及簡單性質(zhì),相對簡單.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用橢圓的定義及勾股定理可求解;(2)問題轉(zhuǎn)化為在軸截距的問題,臨界條件為直線與橢圓相切,求解即可.【小問1詳解】因為,,所以,∴,所以橢圓標準方程為:【小問2詳解】要求的最值,即求直線在軸截距的最值,可知當直線與橢圓相切時,m取得最值.聯(lián)立方程:,整理得,解得所以實數(shù)m的最大值為18、(1);(2).【解析】(1)選①,可得數(shù)列為等差數(shù)列,求出,由,可得數(shù)列的通項公式為選②是與的等比中項,可得,由,可得,從而利用累乘法求得數(shù)列的通項公式為選③,由,可得,則數(shù)列為等差數(shù)列,從而求出通項公式(2)由(1)知,求出,利用錯位相減求和法求出小問1詳解】選①.因為,,所以是首項為1,公差為1的等差數(shù)列則,從而當時,,經(jīng)檢驗,當時,也符合上式.所以選②.因為是與的等比中項所以,當時,,兩式相減得,整理得,所以,經(jīng)檢驗,也符合上式,所以選③.由題設,得,兩式相減,得,整理,得,因為.所以,所以是首項為1,公差為2的等差數(shù)列,所以【小問2詳解】由(1)知,,所以,所以,則兩式相減,得,所以19、(1)數(shù)列具有性質(zhì),理由見解析;(2),;(3)有限個.【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設,存在,結合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個數(shù)是否有限.【小問1詳解】由,對任意正整數(shù),,說明仍為數(shù)列中的項,∴數(shù)列具有性質(zhì).【小問2詳解】設的公差為.由條件知:,則,即,∴必有且,則,而此時對任意正整數(shù),,又必一奇一偶,即為非負整數(shù)因此,只要為整數(shù)且,那么為中的一項.易知:可取,對應得到個滿足條件的等差數(shù)列.【小問3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個,∴具有性質(zhì)的數(shù)列是有限個.【點睛】關鍵點點睛:根據(jù)性質(zhì)的定義,在第2、3問中判斷滿足等差數(shù)列通項公式,結合各項均為整數(shù),判斷公差的個數(shù)是否有限即可.20、(1);(2)【解析】根據(jù)基本初等函數(shù)的導數(shù)公式以及導數(shù)的運算法則計算可得;【詳解】解:(1)因為所以,即(2)因為所以,即21、(1)(2)存在,【解析】(1)由題意可得,,求得的值即可求解;(2)由(1)得,假設存在滿足條件的直線:,代入橢圓方程消去可得、,由中點坐標公式可得中點的坐標,由求得的值即可求解.小問1詳解】由題意可得,,,解得,,所以橢圓的方程為【小問2詳解】由(1)得,假設存在滿足條件的直線:,代入橢圓方程整理可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南陽2025年河南南陽桐柏縣招聘高中教師60人(第1號)筆試歷年參考題庫附帶答案詳解
- 北京2025年北京市市場監(jiān)督管理局所屬事業(yè)單位招聘筆試歷年參考題庫附帶答案詳解
- 上海2025年上海市靜安區(qū)融媒體中心招聘筆試歷年參考題庫附帶答案詳解
- 聘用駕駛員安全協(xié)議書二零二五年
- 加盟合同樣本二零二五年
- 房車托管運營協(xié)議
- 財產(chǎn)保全擔保合同書
- 二零二五版二手房買賣貸款協(xié)議書
- 退出合伙協(xié)議書二零二五年
- 幼兒園中班語言課件:《小雞看世界》
- 馬克思主義基本原理考試題庫附答案【典型題】
- 部編小學語文單元作業(yè)設計四年級上冊第三單元 3
- MGD與瞼緣炎-課件
- 《脊柱腫瘤》課件
- 禮儀部計劃書
- 順產(chǎn)后健康宣教內(nèi)容
- 新生兒防燙傷
- 設備經(jīng)濟運行分析報告
- 人工智能技術應用介紹
- 物業(yè)費用測算表
評論
0/150
提交評論