版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10915
GenerativeAI
CatalystforGrowthorHarbingerofPremature
De-Professionalization?
YanLiu
WORLDBANKGROUP
DigitalDevelopmentGlobalPracticeSeptember2024
PolicyResearchWorkingPaper10915
Abstract
Thispaperpresentsamulti-sectorgrowthmodeltoeluci-datethegeneralequilibriumeffectsofgenerativeartificialintelligenceoneconomicgrowth,structuraltransformation,andinternationalproductionspecialization.Usingparam-etersfromtheliterature,thepaperemployssimulationstoquantifytheimpactsofartificialintelligenceacrossvari-ousscenarios.Thepaperintroducesacrucialdistinctionbetweenhigh-skill,highlydigitalized,tradableservicesandlow-skill,lessdigitalized,less-tradableservices.Themodel’skeypropositionsalignwithempiricalevidence,andthesimulationsyieldnovelandsoberingpredictions.Unlessartificialintelligenceachieveswidespreadcross-sectoradoptionandcatalyzesparadigm-shiftinginnovationsthatfundamentallyreshapeconsumerpreferences,itsgrowth
benefitsmaybelimited.Conversely,itsdisruptiveimpactonlabormarketscouldbeprofound.Thispaperhighlightstheriskof“prematurede-professionalization”,wherearti-ficialintelligencelikelyshrinksthespaceforcountriestogeneratewell-paidjobsinhigh-skillservices.Theanalysisportendsthatdevelopingcountriesfailingtoadoptarti-ficialintelligenceswiftlyriskentrapmentascommodityexporters,potentiallyfacingmassiveyouthunderemploy-ment,diminishingsocialmobility,andstagnatingorevendeclininglivingstandards.Thepaperalsodiscussesartificialintelligence’sbroaderimplicationsoninequality,exploringmultiplechannelsthroughwhichitmayexacerbateormit-igateeconomicdisparities.
ThispaperisaproductoftheDigitalDevelopmentGlobalPractice.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp
.Theauthormaybecontactedatyanliu@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
GenerativeAI:CatalystforGrowthorHarbingerofPremature
De-Professionalization?
YanLiu*
WorldBank
Keywords:ArtificialIntelligence,StructuralTransformation,Trade,EconomicGrowth,InequalityJELCodes:O14,F16,F63
*Email:yanliu@.IamgratefulforexcellentcommentsfromStephaneStraub,EstefaniaBelenVergaraCobos,andHeWang.Allremainingerrorsaremyown.
1
1Introduction
ArtificialIntelligence(AI),particularlyrecentadvancesingenerativeAI,hassparkedintensedebateaboutitspotentialimpactoneconomicgrowth,labormarkets,andglobaltradepatterns.EstimatesandprojectionsofAI’seconomiceffectsvarywidely.GoldmanSachs(2023)predictsthatgenerativeAIcouldincreaseglobalGDPby7%,equivalenttoUS$7trillionoveradecade.Acemoglu2024providesamoreconservativeestimate,predictingaGDPincreaseofonly0.9%to1.1%overthenextdecade.D.Autor2024arguesthatgenerativeAIoffersauniqueopportunitytoexpandthemiddleclassbyenablingmiddle-skillworkerstoperformhigher-stakedecision-makingtaskscurrentlyreservedforeliteexperts.Incontrast,FreyandOsborne2024suggeststhatbyloweringbarrierstoentryincognitiveoccupations,generativeAIwillincreasecompetition,eventuallydrivingdownwagesandcausingsignificantlabormarketdisruptions.IfgenerativeAItoolscommodifyexpertiseandreducethereturnstospecializedskills,individualsmaybelessincentivizedtoacquireadvancedexpertise,leadingtofurtherdownsidestoproductivityandwages(Capraroetal.2024).
WhilediscourseonAI’seconomicimpactpredominantlyfocusesonadvancedeconomies,itsinfluenceondevelopingcountriesandglobalproductionpatternsremainsuncertainandprofound.KorinekandStiglitz2021warnthatAIcouldworsenthetermsoftradefordevelopingcountriesbyerodingtheirlabor-costadvantage,potentiallyleadingtofurtherimpoverishment.Conversely,AImightreducegeographicalandlanguagebarriers,shrinkhumancapitalgaps,andincreaseoutsourcingofcognitivetaskstothesenations,potentiallydiminishingincomedisparitieswithwealthiercountries.However,thisoptimisticoutcomehingesonrapidAIadoptionindevelopingcountries—aprospecthamperedbylowlaborcostsandsignificantbarrierssuchaspoorinfrastructure,education,andregulatoryframeworks.
GivenAI’svariedimpactsacrossindustriesandcountries,anuancedanalysisisrequired.ThispaperexaminesgenerativeAI’spotentialeffectsoneconomicgrowth,labormarkets,andinequalitythroughthelensofstructuraltransformationandglobalproductionspecialization,aimingtoofferinsightsintohowAImayreshapeeconomiesandsocietiesworldwide.
Structuraltransformation—thereallocationofeconomicactivitiesacrosssectors—isintegraltoeco-nomicgrowth.Decadesago,economistsnotedadeclineintheshareofagricultureinbothemploymentandoutput,atemporaryriseinmanufacturing,andalong-termshifttowardsservices(Kuznets1957). Multi-sectorgrowthmodelsofferuniqueadvantagesforstudyingAI’simpact.Thedominantgrowthmodelsineconomicshavehistoricallybeensingle-sectorconstructs(Solow1956;Romer1986;LucasJr1988;AghionandHowitt1992;GrossmanandHelpman1991).Thesemodelshaveprovedpowerful
2
andappealing,thoughtheyarenotwithoutlimitations.Suchmodelsemphasizedtheimportanceofcapital,labor,education,andinnovationindrivinggrowth,butoverlookthedifferencesandintricateinter-linkagesbetweensectors.Consequently,single-sectormodelsfallshortinelucidatinghowanecon-omy’scompositionalstructurerelatestoitsgrowthtrajectory.Theeconomiccomplexitytheory(HidalgoandHausmann2009)showsthatacountry’sindustrialcompositionandspecializationpatternsstronglyinfluenceitsgrowthprospects.Understandingthecomplexinterplaybetweengrowthandstructuraltransformationisessentialforformulatingpoliciesthatenablesustainabledevelopmentatscale(GollinandKaboski2023).
Iconstructasimplemulti-sectorgrowthmodeltoconceptualizethedistinctchannelsthroughwhichAIinfluencesgrowthandstructuraltransformation.Themodelbuildsonrecentstructuraltransformationframeworks(Rodrik2016;Comin,Lashkari,andMestieri2021;Matsuyama2019)andincorporatesnon-homotheticpreferences,whereincomeelasticitiesofdemandvaryacrosssectors.Theeconomyhasfoursectors:agriculture(A),manufacturing(M),high-skillservices(Sh),andlow-skillservices(Sl).Laboristheonlyfactorofproduction.Themodelinitiallyassumesaclosedeconomy,laterextendingtoanopeneconomycontext.Italsoexploresvariousmodelextensions,transitioningfromexogenoustoendogenousgrowthandincorporatinginter-sectoralproductivitylinkages.Themodel’spropositionsarestronglysupportedbyempiricalevidence.
High-skillservicesincludeinformationandcommunicationtechnology(ICT)services,financeandinsurance,andprofessional,scientific,andtechnicalservices.Theterm”high-skill”servesasashorthandforsectorscharacterizedbyhighlevelsofskill,income,tradability,anddigitalization.Theseindustriessignificantlydifferfromotherservicesectorsacrossallfourdimensions.BasedondatafromtheU.S.andChina,thesethreeindustriesexhibitthehighestaverageearnings,ICTserviceinputintensity,tradeintensity,andthelargestshareofemployeeswithadvanceddegrees(master’sorhigher).Otherservicesareclassifiedaslow-skillservices.Althougheducationandhealthcarealsohaveahighproportionofemployeeswithadvanceddegrees,theyareconsideredlow-skillduetotheirlowtradabilityanddigitalization.
AIaffectsgrowthandstructuraltransformationthroughthreedistinctchannels:
1.Demand:AIcreatesradicallynewproductsandshiftsconsumerpreferences.Itreshapesutilityfunctionsbyalteringincomeelasticitiesforcertainsectorsandchangingtheelasticityofsubstitutionacrosssectors.
2.Supply:AIaffectsrelativepricesacrosssectors.Whileprevioustechnologiesprimarilyaffectedthegoods-producingsectorandroutinetasks,generativeAItargetshigh-skillservices,particularly
3
cognitiveandcreativetasks(Eloundouetal.2023;Gmyrek,Berg,andBescond2023).
3.Internationalproductionspecialization:AIchangescomparativeadvantagesamongcountries.Na-tionsthatadoptgenerativeAIearlycanenhancetheircomparativeadvantageinhigh-skillser-vices.Additionally,generativeAIhasbeenshowntoimprovetheproductivityofless-skilled,less-experiencedworkers(Brynjolfsson,Li,andRaymond2023;NoyandW.Zhang2023;Pengetal.2023;Dell’Acquaetal.2023),potentiallyenablingdevelopingcountriestocompeteinhigh-skillservicesandreplacemoreexpensivelaborindevelopednations.
Usingmodelparameterssourcedfromtheliterature,thepaperquantifiesAI’spotentialimpactthroughsimulations.IexplorethreescenariosregardingAI’sinfluence:
1.Short-term/pessimistic:AIexclusivelyincreaseslaborproductivitygrowthinhigh-skillservices.
2.Medium-term/neutral:AIenhanceslaborproductivitygrowthacrossallfoursectors,withthemostsubstantialincreaseobservedinhigh-skillservices.
3.Long-term/optimistic:AInotonlyboostslaborproductivityinallsectorsbutalsocatalyzesthecreationofrevolutionaryproducts,fundamentallyalteringsocietalpreferences.
Thesimulationsrevealseveralnovelandsoberingfindings:
1.Therecentriseinhigh-skillservicesemploymentshareinmanycountrieswilleventuallystagnateordecline,followingahump-shapedcurvesimilartomanufacturing.Althoughhigherincomesincreasedemandforhigh-skillservices,advancesinAIwillreducetheneedforwhitecollarworkers,shiftingjobconcentrationtolow-skillservices.
2.AIwillfurtherlimitthepotentialforcreatingqualityjobsinthehigh-skillservicessector,partic-ularlyindevelopingcountries.Similartoprematurede-industrialization,AIwillcause”prematurede-professionalization”,wherehigh-skillservicesemploymentpeakearlierandatlowerincomelev-els.
3.SmallopeneconomiesfaceacriticaljuncturewithAIadoption.FailureordelayinembracingAItechnologiesriskserodingexistingcomparativeadvantagesinhigh-skillservicesandmanufacturing,orimpedingthedevelopmentofsuchadvantages.Thesecountriesmayconsequentlyfindthemselvestrappedascommodityexporters,withemploymentheavilyconcentratedinagricultureandlow-skillservices.Incontrast,successfulandtimelyAIadoptioncouldcatalyzethedevelopmentofcomparativeadvantagesinmanufacturingorhigh-skillservicesector.
4
4.UnlessAIiswidelyadoptedacrosssectorsanddrivestransformativeinnovationsthatpermanentlyshiftconsumerpreferences,itsgrowthbenefitswilllikelybeunderwhelming.Evenwitha50%increaseinlaborproductivitygrowthinhigh-skillservices,realincomeseesonlyamodestinitialboostof0.046percentagepoints,whichgraduallydiminishesovertime.After100years,realincomeisjust2.4%higherthanwithoutAI.IfAIenhancesproductivityacrossallfoursectors,realincomeatyear100is19%higher.Inthemostoptimisticscenario,realincomeatyear100is28%higherthanthebaseline.
ThepaperthenaddressesthelimitationsofthemodelandconsidershowgenerativeAImightinfluencegrowthandinequalitymorebroadly.Themodel’sexclusionofcapitaloverlooksakeyaspectofAI’simpact:automation,jobdisplacement,andthedeclininglaborincomeshare.Additionally,byomittingintermediateinputs,themodelmayunderestimatethedemandforhigh-skillservices.Theassumptionofhomogeneous,freelymobilelaboracrosssectors,whichleadstoequalizedincomes,divergesfromrealityandprovideslittleinsightintoincomeinequality.GenerativeAIcouldlowerentrybarriersforcertainhigh-skillservicejobs,potentiallydrivingdownaveragewagesandreducingincomeinequalityacrossindustriesandoccupations.However,itmayalsoinfluenceincentivesforeducationandskillacquisition.IfAIshrinkstheshareofhigh-skill,well-paidjobsanddepresseswagesinthesefields,individualsmaybecomelessmotivatedtoinvestinhighereducation,whichcouldhinderlong-termgrowthandlimitsocialmobility.
ThepapercontributestothegrowingbodyofliteratureontheeconomicimpactsofAIinseveralways.
First,tothebestofmyknowledge,itisthefirststudytoanalyzetheeffectsofgenerativeAIthroughthelensofstructuraltransformationandinternationalproductionspecialization.Unlikemanyexistingstudiesthatfocusonoccupationalexposurebasedoncurrenttasks,thismodelincorporatesdemand-sidefactors,rootedinnon-homotheticpreferencesacrosssectors.ThisbroaderapproachcapturesAI’spotentialtoreshapetaskcontentandcreatenewoccupations,offeringamoreholisticviewatthemacroe-conomiclevel.
Second,thispaperadvancestraditionalstructuraltransformationmodelsbyintroducingacriticaldistinctionbetweenhigh-skill,highlydigitalized,tradableservicesandlow-skill,lessdigitalized,non-tradableservices.ThisdifferentiationyieldsdeeperinsightsintotheunevenimpactofAIacrossservicesectorsandoccupations,aswellasitsimplicationsforeconomicgrowthandinequality.
Third,alongsidenon-homotheticpreferences,thisstudyexploresanewdemand-sidechannelthroughwhichAImaydrivegrowth:shiftingconsumerpreferences.OnescenariomodelsAIasacatalystfor
5
game-changingnewproductsandindustries,permanentlyalteringincomeelasticityincertainsectorsandtheelasticityofsubstitutionacrosssectors.Combinedwiththechannelofinternationalproductionspecialization,thisapproachoffersrichinsightsintoAI’svariedeconomicimpactsacrossdifferenttypesofcountries.
Fourth,thepaperusessimulationstoilluminatethegeneralequilibriumeffectsofAIoneconomicgrowthandlabormarketsundervariousscenarios,quantifyingthescaleoftheseeffects.ConsistentwithAcemoglu2024,theresultssuggestthatAI’sshort-tomedium-termgrowthimpactwilllikelybemodest.
Notably,thispaperisthefirsttopredictAI’spotentialtoreduceopportunitiesforwell-paidjobsinhigh-skillservices.ThiscouldbeparticularlyharmfulforlateAIadoptersanddevelopingcountries,aphenomenonIdubas”prematurede-professionalization”.Itunderscoresthediminishingprospectsfordevelopingeconomiestofosterhigh-skillserviceemployment,cautioningthatthoseslowtoadoptAIriskbeingrelegatedtocommodityexporters,facinglargescaleyouthunderemployment,reducedsocialmobility,andpotentialdeclinesinlivingstandards.
Therestofthepaperisorganizedasfollows:Section2presentsstylizedfactsaboutstructuraltransformation,thedivergencebetweenhigh-andlow-skillservices,andAI’sdisproportionateeffectsonhigh-skillservices.Section3introducesthefour-sectorgrowthmodelandderivesseveralempiricallysupportedpropositions.Section4simulatesthebaselinemodelusingparametersfromtheliteratureandquantifiesAI’spotentialimpactthroughthreechannelsacrossthreescenarios.Section5discussesmodellimitationsandthebroaderimplicationsofAIforgrowthandinequality.Section6concludes.
2StylizedFacts
2.1Structuraltransformation
Demandsidedriver:Differentincomeelasticitiesacrosssectors
Differencesinincomeelasticitiesofdemandacrosssectorsareakeydriverofstructuraltransformation.Economistshavelongstudiedsystematicvariationsinthesectoralcompositionofdemandasincomechanges,aconceptexploredthroughEngelcurves.Typically,servicesexhibithigherincomeelasticitiesthanagriculturalandmanufacturedgoods(1).Asaresult,non-homotheticpreferencesacrosssectorscanexplaintheshiftinconsumerspendingfromfoodandmanufacturingtoservices,observableinbothrealandnominalterms(Kongsamut,Rebelo,andXie2001;FoellmiandZweim¨uller2008;Boppart2014;Comin,Lashkari,andMestieri2021).
6
Figure1:Estimatedincomeelasticitybygoodstype
Note:BasedonUSdatafromAguiarandBils2015
Supplysidedriver:Differentproductivitygrowthacrosssectors
Changingrelativepricesacrosssectorsisakeysupply-sideforceaffectingstructuraltransformation.Changesinrelativepricesareprimarilydrivenbytheheterogeneityinsectoralproductivitygrowthrates.Empiricalestimatesshowsignificantvariationsinproductivitygrowthratesacrosssectors(MartinandMitra2001;DuarteandRestuccia2010;LawrenceandEdwards2013).Ifsectoraldemandisinelastic,rapidproductivitygrowthandsubsequentpricedeclinesinasectorcanleadtoreducedshareofspendingandemploymentinthatsector.Historically,productivitygrowthinagricultureandmanufacturinghasexceededthatintheservicesector,partlyexplainingthedecliningshareofmanufacturinginrichcountrieswithhighmanufacturingproductivity(NgaiandPissarides2007).Thismechanism,oftenreferredtoastheBaumol’sdisease,describeshoweconomicactivityshiftsfromindustrieswithfasterproductivitygrowthtothosewithslowergrowth(Baumol1967).Additionally,AcemogluandGuerrieri2008highlightcross-sectoraldifferencesinfactorintensityandcapitaldeepeningascausesofrelativepricechanges.
Globally,averageannuallaborproductivitygrowthduring1950-2010wasthehighestinagriculture(3%),followedbymanufacturing(2.8%),high-skillservices(1.5%),andthelowestinlow-skillservices(1.1%)(Figure2).Productivitygrowthvariessignificantlyacrosscountryincomegroups.Amonghigh-incomecountries,laborproductivitygrowthinagricultureandmanufacturingisabove4%,morethan
7
twicethegrowthrateinhigh-skillandlow-skillservices(around1.5%).Inuppermiddle-incomecountries,agricultureandmanufacturingreportthehighestlaborproductivitygrowthofaround3%,followedby2%inhigh-skillservices,and1.2%inlow-skillservices.Inlowermiddle-incomeandlow-incomecountries,agriculturalproductivitygrowthisonly1.5%,followedbyhigh-skillservicesat1.2%.Productivitygrowthinmanufacturingisonly0.7%,andamere0.4%inlow-skillservices.
Figure2:Laborproductivitygrowthacrosssectors
Source:GGDC10-sectorDatabase.Laborproductivityiscalculatedasvalue-addedat2005fixedprices
ineachsectordividedbysectoralemployment.SeeAppendixAformoredetails.
Internationalproductionspecializationandprematurede-industrialization
Technology-enabledglobalizationhasimpactedthedynamicsofemploymentandoutputsharesthroughpatternsofinternationalspecialization.Advancesintransportationandcommunicationtechnologiesinthelate20thcenturyenabledproductionunbundling,outsourcing,andoffshoringonamassivescale,leadingtounprecedentedgrowthininternationaltradeandinvestment.Manystudieshavedocumentedtheeffectsoftradeandmultinationalcorporations’offshoringonde-industrializationintheUS(D.H.Au-tor,Dorn,andHanson2013;Acemoglu,D.Autor,etal.2016;Boehm,Flaaen,andPandalai-Nayar2020).Suchforcesmaybeevenstrongerforsmallerdevelopingcountries,whichtypicallyactaspricetakersinworldmarkets.Theorysuggeststhatinternationaltradecancreatepatternsofstructuralchangedis-tinctfromclosedeconomymodels(Matsuyama2009;Matsuyama2019).Globalizationamplifies,ratherthanreduces,thepowerofendogenousdomesticdemandcompositiondifferencesasadriverofstructuraltransformation(Matsuyama2019).Arecentlineofworkhasdocumentedpronouncedtrendstowardearlierde-industrializationindevelopingcountries(DasguptaandSingh2007;Rodrik2016).
Mosthigh-incomecountrieshaveexperiencedacontinuousdeclineinagriculturalemploymentshare,whichhadfallenbelow3%by2010.Themanufacturingsectorinitiallysawanincreaseinemployment
8
share,peakingataround30%beforebeginningtodecline(Figure3).Concurrently,thehigh-skillservicessectorhasgraduallyincreaseditsemploymentshare,withsomecountriesalreadyreachingapeakorstagnationpointofapproximately20%.By2010,low-skillserviceshadcometodominateemployment,accountingfor70%-85%oftotaljobs.
Therapidproductivitygrowthinagriculture,alongwithindustrializationandurbanization,beganmorethan150yearsagoinWesternEuropeandtheUnitedStates.Duringthisperiod,domesticsupplyanddemandforcesplayedamuchmoresignificantrolethanglobaltrade.Whenglobalizationacceler-atedinthe1990s,mosthigh-incomecountrieshadalreadytransitionedtoservice-dominatedeconomies,enjoyingacomparativeadvantageinproducingandexportinghigh-skilltradableservices.
Figure3:Sectoralemploymentshare-Highincomecountries
Upper-middle-incomecountries,ontheotherhand,exhibitpatternsofprematurede-industrializationintheirstructuraltransformation.Agriculturalemploymentsharehasdeclinedovertimeandhasbeensurpassedbyemploymentinlow-skillservices.Manufacturingemploymentinthesecountrieshaspeakedataround20%,asignificantlylowerlevelthanthepeakreachedinhigh-incomecountries,andatalowerrealincomelevel.Theemploymentshareinhigh-skillserviceshasbeguntoincreaseinsomeofthesecountriesbutremainswellbelowthelevelsseeninhigh-incomenations,asshowninFigure4.
9
Figure4:Sectoralemploymentshare-Uppermiddleincomecountries
Lower-middle-incomeandlow-incomecountriesmaintainextremelylowandstagnantemploymentsharesinmanufacturingandhigh-skillservices(Figure5).Inmostofthesenations,agriculturestillaccountedformorethanhalfoftotalemploymentby2010.Unlikethehigh-incomecountrytrajectoryofmovingfromfarmstofactoriesandthentooffices,laborfreedfromagricultureintheselower-incomecountriestendstomovedirectlyintolow-skillservices.Theselow-skillservicejobsarepredominantlyconcentratedinretail,restaurantsandhotels,andpersonalservicessectors,presentingsignificantchal-lengesforlong-termeconomicdevelopmentandindividualprosperity.Suchjobstypicallyofferlimitedopportunitiesforlearning,skillsupgrading,andtechnologicaladvancement,whicharecrucialfordrivingproductivitygrowthandinnovation.Moreover,thesesectorsgenerallyhavelowexportpotential,restrict-ingacountry’sabilitytogenerateforeignexchangeandparticipateeffectivelyintheglobaleconomy.Unlikemanufacturingorhigh-skillservices,whichoftenbenefitfromeconomiesofscaleandtechnologicalprogress,manylow-skillservicejobsarelessamenabletosuchefficiencygains.Thiscanleadtostagnantwagesandlivingstandardsintheseeconomies,orevendeterioratingtermsoftrade.
10
Figure5:Sectoralemploymentshare-Lowermiddleandlowincomecountries
Thesediversepatternsofstructuraltransformationacrossdifferentincomegroupshighlightthecom-plexinterplayofdomesticandglobalfactorsinshapingeconomicdevelopmenttrajectories.
2.2Divergencewithintheservicesector
Distinctcharacteristicsofhigh-skillandlow-skillservices
Thediversenatureofactivitiesandjobswithintheservicssectornecessitatesamoregranularlevelofanalysis.Theservicesectorisanextensivecategoryencompassingawiderangeofactivitiesnotclassifiedunderagricultureormanufacturing.Thesubsectorsandoccupationsinservicesarehighlyvaried,rangingfromlow-skilljobssuchascashiersandcleanerstohighlyspecializedroleslikesoftwareengineers,fundmanagers,lawyers,andsurgeons.Globally,servicesnowcontributetohalfofGDPandaccountforover60%ofemployment.Inhigh-incomecountries,theservicesectorrepresentsthree-quartersofbothemploymentandGDP.Eveninlow-incomecountries,servicesaccountedforaroundone-thirdofGDPandemploymentin2022.However,theservicesectorisoftentreatedasaresidualcategoryafteragricultureandmanufacturing,anafterthoughtineconomicmeasurement.Manycountriesstillusetheoutdatedthree-sectorframeworkineconomicaccounting,andstructuraltransformationmodelsoftenfocusonthesebroadsectors,offeringlimitedinsightintotheincreasinglyservice-basedglobaleconomy.
11
Risingincomeinequalitywithinindustries,especiallyamongdifferentserviceindustries,furtherun-derscorestheneedtodistinguishvarioustypesofservicesineconomicresearch.Card,Rothstein,andYi2024havedocumentedsignificantheterogeneityinindustrywagepremiumsintheUS,showingthatworkersinhigher-payingindustriespossesshigherobservedandunobservedskills,thuswideningbetween-industrywageinequality.Haltiwanger,Hyatt,andSpletzern.d.foundthatmostoftheriseinearningsinequalityintheUSisduetoincreasingbetween-industryinequality,withthedisparityparticularlypronouncedintheservicesector.
High-skill,highlydigitalized,tradableserviceindustries,suchasinformationandcommunicationtechnology(ICT)services,financialservices,andprofessionalandbusinessservices,arepullingfurtheraheadofotherserviceindustries.In2022,theaverageannualearningsintheinformation,financeandinsurance,andprofessionalservicesectorsexceededUS$120,000intheUS,placingthemamongthetopfivehighest-earningindustries.InChina,ICTservice
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《跳蹦蹦床的大象》少兒美術(shù)教育繪畫課件創(chuàng)意教程教案
- 蒲公英課件文庫
- 西南林業(yè)大學(xué)《產(chǎn)品攝影》2023-2024學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《設(shè)計模式》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023年1月福建省普通高中學(xué)業(yè)水平合格性考試歷史試題(原卷版)
- 陀螺課件 圖文
- 西京學(xué)院《面向?qū)ο蟪绦蛟O(shè)計》2022-2023學(xué)年期末試卷
- 西華師范大學(xué)《小學(xué)數(shù)學(xué)課程與教學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《運(yùn)動技能學(xué)習(xí)與控制》2022-2023學(xué)年期末試卷
- 臺兒莊介紹課件
- 《淘氣的一天》(教案)-2024-2025學(xué)年一年級上冊數(shù)學(xué)北師大版
- 化工原理課程設(shè)計附錄二
- 職業(yè)健康安全培訓(xùn)課件(共32張課件)
- 中醫(yī)中藥與免疫
- 人教新目標(biāo)八年級英語上冊《任務(wù)型閱讀》專項練習(xí)題(含答案)
- 2024年度保密教育線上培訓(xùn)考試題庫及答案(基礎(chǔ)+提升)
- 2024至2030年成都市酒店市場前景調(diào)查及投資研究報告
- XXX200MW光伏發(fā)電項目施工組織設(shè)計
- 2024-2030年中國氦液化系統(tǒng)市場深度調(diào)查與未來發(fā)展前景預(yù)測研究報告
- 2024年歷年中級經(jīng)濟(jì)師工商管理考試真題及答案
- 2024年感動中國年度人物介紹頒獎典禮
評論
0/150
提交評論