2025屆重慶市直屬校高一上數(shù)學期末調(diào)研試題含解析_第1頁
2025屆重慶市直屬校高一上數(shù)學期末調(diào)研試題含解析_第2頁
2025屆重慶市直屬校高一上數(shù)學期末調(diào)研試題含解析_第3頁
2025屆重慶市直屬校高一上數(shù)學期末調(diào)研試題含解析_第4頁
2025屆重慶市直屬校高一上數(shù)學期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶市直屬校高一上數(shù)學期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設集合,,則集合與集合的關系是()A. B.C. D.2.將函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則下列說法正確的是()A.圖象的一條對稱軸為 B.在上單調(diào)遞增C.在上的最大值為1 D.的一個零點為3.已知函數(shù)的部分圖象如圖所示,則的解析式為()A. B.C. D.4.關于的方程的實數(shù)根的個數(shù)為()A.6 B.4C.3 D.25.最小值是A.-1 B.C. D.16.函數(shù)的部分圖象是()A. B.C. D.7.下列命題中正確的是()A.若兩個向量相等,則它們的起點和終點分別重合B.模相等的兩個平行向量是相等向量C.若和都是單位向量,則=D.兩個相等向量的模相等8.設全集,集合,,則=()A. B.{2,5}C.{2,4} D.{4,6}9.函數(shù)在的圖象大致為()A. B.C. D.10.(程序如下圖)程序的輸出結果為A.3,4 B.7,7C.7,8 D.7,11二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)f(x)=,設a∈R,若關于x的不等式f(x)在R上恒成立,則a的取值范圍是__12.若,,,則的最小值為______.13.設函數(shù),則____________.14.函數(shù)(其中,,)的圖象如圖所示,則函數(shù)的解析式為__________15.如圖,已知△和△有一條邊在同一條直線上,,,,在邊上有個不同的點F,G,則的值為______16.若、是方程的兩個根,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量滿足,.(1)若的夾角為,求;(2)若,求與的夾角.18.我們知道,函數(shù)的圖象關于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).已知(1)利用上述結論,證明:的圖象關于成中心對稱圖形;(2)判斷的單調(diào)性(無需證明),并解關于x的不等式19.已知函數(shù)為的零點,為圖象的對稱軸(1)若在內(nèi)有且僅有6個零點,求;(2)若在上單調(diào),求的最大值20.已知函數(shù)(1)求函數(shù)的最小值;(2)求函數(shù)的單調(diào)遞增區(qū)間21.已知二次函數(shù)的圖象經(jīng)過,且不等式對一切實數(shù)都成立(1)求函數(shù)的解析式;(2)若對任意,不等式恒成立,求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】化簡集合、,進而可判斷這兩個集合的包含關系.【詳解】因為,,因此,.故選:D.2、B【解析】對選項A,,即可判斷A錯誤;對選項B,求出的單調(diào)區(qū)間即可判斷B正確;對選項C,求出在的最大值即可判斷C錯誤;對選項D,根據(jù),即可判斷D錯誤.詳解】,.對選項A,因為,故A錯誤;對選項B,因為,.解得,.當時,函數(shù)的增區(qū)間為,所以在上單調(diào)遞增,故B正確;對選項C,因為,所以,所以,,,故錯誤;對選項D,,故D錯誤.故選:B3、B【解析】根據(jù)圖像得到,,計算排除得到答案.【詳解】根據(jù)圖像知選項:,排除;D選項:,排除;根據(jù)圖像知選項:,排除;故選:【點睛】本題考查了三角函數(shù)圖像的識別,計算特殊值可以快速排除選項,是解題的關鍵.4、D【解析】轉化為求或的實根個數(shù)之和,再構造函數(shù)可求解.【詳解】因為,所以,所以,所以或,令,則或,因為為增函數(shù),且的值域為,所以和都有且只有一個實根,且兩個實根不相等,所以原方程的實根的個數(shù)為.故選:D5、B【解析】∵,∴當sin2x=-1即x=時,函數(shù)有最小值是,故選B考點:本題考查了三角函數(shù)的有界性點評:熟練掌握二倍角公式及三角函數(shù)的值域是解決此類問題的關鍵,屬基礎題6、C【解析】首先判斷函數(shù)的奇偶性,即可排除AD,又,即可排除B.【詳解】因為,定義域為R,關于原點對稱,又,故函數(shù)為奇函數(shù),圖象關于原點對稱,故排除AD;又,故排除B.故選:C.7、D【解析】考查所給的四個選項:向量是可以平移的,則若兩個向量相等,則它們的起點和終點不一定分別重合,A說法錯誤;向量相等向量模相等,且方向相同,B說法錯誤;若和都是單位向量,但是兩向量方向不一致,則不滿足,C說法錯誤;兩個相等向量的模一定相等,D說法正確.本題選擇D選項.8、D【解析】由補集、交集的定義,運算即可得解.【詳解】因為,,所以,又,所以.故選:D.9、A【解析】根據(jù)函數(shù)解析式,結合特殊值,即可判斷函數(shù)圖象.【詳解】設,則,故為上的偶函數(shù),故排除B又,,排除C、D故選:A.【點睛】本題考查圖象識別,注意從函數(shù)的奇偶性、單調(diào)性和特殊點函數(shù)值的正負等方面去判斷,本題屬于中檔題.10、D【解析】∵變量初始值X=3,Y=4,∴根據(jù)X=X+Y得輸出的X=7.又∵Y=X+Y,∴輸出的Y=11.故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、﹣≤a≤2【解析】先求畫出函數(shù)的圖像,然后對的圖像進行分類討論,使得的圖像在函數(shù)的圖像下方,由此求得的取值范圍.【詳解】畫出函數(shù)的圖像如下圖所示,而,是兩條射線組成,且零點為.將向左平移,直到和函數(shù)圖像相切的位置,聯(lián)立方程消去并化簡得,令判別式,解得.將向右平移,直到和函數(shù)圖像相切的位置,聯(lián)立方程消去并化簡得,令判別式,解得.根據(jù)圖像可知【點睛】本小題主要考查分段函數(shù)的圖像與性質(zhì),其中包括二次函數(shù)的圖像、對勾函數(shù)的圖像,以及含有絕對值函數(shù)的圖像,考查恒成立問題的求解方法,考查數(shù)形結合的數(shù)學思想方法以及分類討論的數(shù)學思想方法,屬于中檔題.形如函數(shù)的圖像,是引出的兩條射線.12、【解析】利用基本不等式求出即可.【詳解】解:若,,則,當且僅當時,取等號則的最小值為.故答案為:.【點睛】本題考查了基本不等式的應用,屬于基礎題.13、【解析】依據(jù)分段函數(shù)定義去求的值即可.【詳解】由,可得,則由,可得故答案為:14、【解析】如圖可知函數(shù)的最大值,當時,代入,,當時,代入,,解得則函數(shù)的解析式為15、16【解析】由題意易知:△和△為全等的等腰直角三角形,斜邊長為,,故答案為16點睛:平面向量數(shù)量積類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式a·b=|a||b|cosθ;二是坐標公式a·b=x1x2+y1y2;三是利用數(shù)量積的幾何意義.本題就是利用幾何意義處理的.(2)求較復雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關公式進行化簡.16、【解析】由一元二次方程根與系數(shù)的關系可得,,再由

,運算求得結果【詳解】、是方程的兩個根,,,,,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用公式即可求得;(2)利用向量垂直的等價條件以及夾角公式即可求解.【詳解】解:(1)由已知,得,所以,所以.(2)因為,所以.所以,即,所以.又,所以,即與的夾角為.【點睛】主要考查向量模、夾角的求解,數(shù)量積的計算以及向量垂直的等價條件的運用.屬于基礎題.18、(1)證明見解析(2)為單調(diào)遞減函數(shù),不等式的解集見解析.【解析】(1)利用已知條件令,求出的解析式,利用奇函數(shù)的定義判斷為奇函數(shù),即可得證;(2)由(1)得,原不等式變成,利用函數(shù)單調(diào)性化為含有參數(shù)的一元二次不等式,求解即可.【小問1詳解】證明:∵,令,∴,即,又∵,∴為奇函數(shù),有題意可知,的圖象關于成中心對稱圖形;【小問2詳解】易知函數(shù)為單調(diào)遞增函數(shù),且對于恒成立,則函數(shù)在上為單調(diào)遞減函數(shù),由(1)知,的圖象關于成中心對稱圖形,即,不等式得:,即,則,整理得,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為.19、(1);(2).【解析】(1)根據(jù)的零點和對稱中心確定出的取值情況,再根據(jù)在上的零點個數(shù)確定出,由此確定出的取值,結合求解出的取值,再根據(jù)以及的范圍確定出的取值,由此求解出的解析式;(2)先根據(jù)在上單調(diào)確定出的范圍,由此確定出的可取值,再對從大到小進行分析,由此確定出的最大值.【詳解】(1)因為是的零點,為圖象的對稱軸,所以,所以,因為在內(nèi)有且僅有個零點,分析正弦函數(shù)函數(shù)圖象可知:個零點對應的最短區(qū)間長度為,最長的區(qū)間長度小于,所以,所以,所以,所以,所以,所以,所以,代入,所以,所以,所以,又因為,所以,所以;(2)因為在上單調(diào),所以,即,所以,又由(1)可知,所以,所以,當時,,所以,所以,所以此時,因為,所以,又因為在時顯然不單調(diào)所以在上不單調(diào),不符合;當時,,所以,所以,所以此時,因為,所以,又因為在時顯然單調(diào)遞減,所以在上單調(diào)遞減,符合;綜上可知,的最大值為.【點睛】思路點睛:求解動態(tài)的三角函數(shù)涉及的取值范圍問題的常見突破點:(1)結論突破:任意對稱軸(對稱中心)之間的距離為,任意對稱軸與對稱中心之間的距離為;(2)運算突破:已知在區(qū)間內(nèi)單調(diào),則有且;已知在區(qū)間內(nèi)沒有零點,則有且.20、(1)(2)【解析】(1)利用三角函數(shù)恒等變換對函數(shù)進行化簡,根據(jù)正弦型三角函數(shù)性質(zhì)求解函數(shù)的最小值即可;(2)利用正弦函數(shù)的單調(diào)性,整體代換求解函數(shù)的單調(diào)遞增區(qū)間即可.【小問1詳解】解析:(1),∴當時取得最小值【小問2詳解】(2)由(1)得,,令,得函數(shù)的單調(diào)遞增區(qū)間為21、(1);(2).【解析】(1)觀察不等式,令,得到成立,即,以及,再根據(jù)不等式對一切實數(shù)都成立,列式求函數(shù)的解析式;(2)法一,不等式轉化為對恒成立,利用函數(shù)與不等式的關系,得到的取值范圍,法二,代入后利用平方關系得到,恒成立,再根據(jù)參變分離,轉化為最值問題求參數(shù)的取值范圍.【詳解】(1)由題意得:①,因為不等式對一切實數(shù)都成立,令,得:,所以,即②由①②解得:,且,所以,由題意得:且對恒成立,即對恒成立,對③而言,由且,得到,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論