2024年湖南省瀏陽市數(shù)學九年級第一學期開學統(tǒng)考模擬試題【含答案】_第1頁
2024年湖南省瀏陽市數(shù)學九年級第一學期開學統(tǒng)考模擬試題【含答案】_第2頁
2024年湖南省瀏陽市數(shù)學九年級第一學期開學統(tǒng)考模擬試題【含答案】_第3頁
2024年湖南省瀏陽市數(shù)學九年級第一學期開學統(tǒng)考模擬試題【含答案】_第4頁
2024年湖南省瀏陽市數(shù)學九年級第一學期開學統(tǒng)考模擬試題【含答案】_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁2024年湖南省瀏陽市數(shù)學九年級第一學期開學統(tǒng)考模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)小李家距學校3千米,中午12點他從家出發(fā)到學校,途中路過文具店買了些學習用品,12點50分到校.下列圖象中能大致表示他離家的距離S(千米)與離家的時間t(分鐘)之間的函數(shù)關(guān)系的是()A. B.C. D.2、(4分)已知直線y=kx+b,k>0,b>0,則下列說法中正確的是()A.這條直線與x軸交點在正半軸上,與y軸交點在正半軸上B.這條直線與x軸交點在正半軸上,與y軸交點在負半軸上C.這條直線與x軸交點在負半軸上,與y軸交點在正半軸上D.這條直線與x軸交點在負半軸上,與y軸交點在負半軸上3、(4分)如圖,在中,點P在邊AB上,則在下列四個條件中::;;;,能滿足與相似的條件是()A. B. C. D.4、(4分)已知點(-4,y1),(2,y2)都在直線y=-3x+2上,則y1,y2的大小關(guān)系是A.y1>y2 B.y1=y2 C.y1<y2 D.不能比較5、(4分)“分數(shù)”與“分式”有許多共同點,我們在學習“分式”時,常常對比“分數(shù)”的相關(guān)知識進行學習,這體現(xiàn)的數(shù)學思想方法是()A.分類 B.類比 C.方程 D.數(shù)形結(jié)合6、(4分)如圖,在四邊形ABCD中,已知AB=CD,M、N、P分別是AD、BC、BD的中點∠ABD=20°,∠BDC=70°,則∠NMP的度數(shù)為()A.50° B.25° C.15° D.207、(4分)在下列條件中能判定四邊形ABCD是平行四邊形的是()A.AB=BC,AD=DC B.AB//CD,AD=BCC.AB//CD,∠B=∠D D.∠A=∠B,∠C=∠D8、(4分)如圖所示,在△ABC中,其中BC⊥AC,∠A=30°,AB=8m,點D是AB的中點,點E是AC的中點,則DE的長為()A.5 B.4 C.3 D.2二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)在?ABCD中,如果∠A+∠C=140°,那么∠B=度.10、(4分)設(shè)甲組數(shù):,,,的方差為,乙組數(shù)是:,,,的方差為,則與的大小關(guān)系是_______(選擇“>”、“<”或“=”填空).11、(4分)如圖,正方形中,對角線,交于點,點在上,,,垂足分別為點,,,則______.12、(4分)已知:線段AB,BC.求作:平行四邊形ABCD.以下是甲、乙兩同學的作業(yè).甲:①以點C為圓心,AB長為半徑作弧;②以點A為圓心,BC長為半徑作弧;③兩弧在BC上方交于點D,連接AD,CD.四邊形ABCD即為所求平行四邊形.(如圖1)乙:①連接AC,作線段AC的垂直平分線,交AC于點M;②連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD.四邊形ABCD即為所求平行四邊形.(如圖2)老師說甲、乙同學的作圖都正確,你更喜歡______的作法,他的作圖依據(jù)是:______.13、(4分)在平面直角坐標系中,中,點,若隨變化的一族平行直線與(包括邊界)相交,則的取值范圍是______.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,矩形ABCD中,點E,F(xiàn)分別在邊AB,CD上,點G,H在對角線AC上,EF與AC相交于點O,AG=CH,BE=DF.(1)求證:四邊形EGFH是平行四邊形;(2)若EG=EH,DC=8,AD=4,求AE的長.15、(8分)如圖,在邊長為的正方形ABCD中,作∠ACD的平分線交AD于F,過F作直線AC的垂線交AC于P,交CD的延長線于Q,又過P作AD的平行線與直線CF交于點E,連接DE,AE,PD,PB.(1)求AC,DQ的長;(2)四邊形DFPE是菱形嗎?為什么?(3)探究線段DQ,DP,EF之間的數(shù)量關(guān)系,并證明探究結(jié)論;(4)探究線段PB與AE之間的數(shù)量關(guān)系與位置關(guān)系,并證明探究結(jié)論.16、(8分)某學校在商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元.(1)求購買一個甲種足球、一個乙種足球各需多少元?(2)為響應(yīng)“足球進校園”的號召,這所學校決定再次購買甲、乙兩種足球共50個.并且購進乙種足球的數(shù)量不少于甲種足球數(shù)量的,學校應(yīng)如何采購才能使總花費最低?17、(10分)某物流公司引進A,B兩種機器人用來搬運某種貨物,這兩種機器人充滿電后可以連續(xù)搬運5小時,A種機器人于某日0時開始搬運,過了1小時,B種機器人也開始搬運,如圖,線段OG表示A種機器人的搬運量yA(千克)與時間x(時)的函數(shù)圖象,根據(jù)圖象提供的信息,解答下列問題:(1)求yB關(guān)于x的函數(shù)解析式;(2)如果A,B兩種機器人連續(xù)搬運5小時,那么B種機器人比A種機器人多搬運了多少千克?18、(10分)如圖,在中,對角線BD平分,過點A作,交CD的延長線于點E,過點E作,交BC延長線于點F.(1)求證:四邊形ABCD是菱形;(2)若求EF的長.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)已知,則____.20、(4分)大型古裝歷史劇《那年花開月正圓》火了“晉商”一詞,帶動了晉商文化旅游的發(fā)展.圖是清代某晉商大院藝術(shù)窗的一部分,圖中所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面積和是49cm2,則其中最大的正方形S的邊長為________cm.21、(4分)在平面直角坐標系中,已知一次函數(shù)y=x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1_____y2(填“>”,“<”或“=”).22、(4分)如圖,直線y=mx與雙曲線y=交于A、B兩點,D為x軸上一點,連接BD交y軸與點C,若C(0,-2)恰好為BD中點,且△ABD的面積為6,則B點坐標為__________.23、(4分)已知一次函數(shù)y=-x+1與y=kx+b的圖象在同一直角坐標系中的位置如圖(直線l1和l2),它們的交點為P,那么關(guān)于x的不等式-x+1>kx+b的解集為______.二、解答題(本大題共3個小題,共30分)24、(8分)在平面直角坐標系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,E,F(xiàn).(1)如圖①,當點D落在BC邊上時,求點D的坐標;(2)如圖②,當點D落在線段BE上時,AD與BC交于點H.①求證△ADB≌△AOB;②求點H的坐標.(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).25、(10分)某校要從甲、乙兩名同學中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中,他倆的成績分別如下表,請根據(jù)表中數(shù)據(jù)解答下列問題:第1次第2次第3次第4次第5次平均分眾數(shù)中位數(shù)方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分(1)把表格補充完整:(2)在這五次測試中,成績比較穩(wěn)定的同學是多少;若將80分以上(含80分)的成績視為優(yōu)秀,則甲、乙兩名同學在這五次測試中的優(yōu)秀率分別是多少;(3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認為選誰參加比賽比較合適?說明你的理由.26、(12分)計算:(1)2﹣6+3;(2)(1+)(﹣)+(﹣)×.

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】

根據(jù)小李距家3千米,路程隨著時間的增大而增大確定合適的函數(shù)圖象即可.【詳解】∵小李距家3千米,∴離家的距離隨著時間的增大而增大.∵途中在文具店買了一些學習用品,∴中間有一段離家的距離不再增加,綜合以上C符合.故選C.本題考查了函數(shù)圖象,比較簡單,了解橫、總坐標分別表示什么是解題的關(guān)鍵.2、C【解析】

先確定直線y=kx+b經(jīng)過第一、二、三限,即可對各選項進行判斷.【詳解】解:∵直線y=kx+b,k>0,b>0,∴直線y=kx+b經(jīng)過第一、二、三象限,故選:C.本題考查了一次函數(shù)與系數(shù)的關(guān)系:對于一次函數(shù)y=kx+b,它與y軸交于(0,b),當b>0時,(0,b)在y軸的正半軸上,直線與y軸交于正半軸;當b<0時,(0,b)在y軸的負半軸,直線與y軸交于負半軸.當k>0,b>0?y=kx+b的圖象在一、二、三象限;k>0,b<0?y=kx+b的圖象在一、三、四象限;k<0,b>0?y=kx+b的圖象在一、二、四象限;k<0,b<0?y=kx+b的圖象在二、三、四象限.3、D【解析】

根據(jù)相似三角形的判定定理,結(jié)合圖中已知條件進行判斷.【詳解】當,,所以∽,故條件①能判定相似,符合題意;當,,所以∽,故條件②能判定相似,符合題意;當,即AC::AC,因為所以∽,故條件③能判定相似,符合題意;當,即PC::AB,而,所以條件④不能判斷和相似,不符合題意;①②③能判定相似,故選D.本題考查相似三角形的判定,熟練掌握判定定理是解題的關(guān)鍵.4、A【解析】

先求出y1,y1的值,再比較其大小即可.【詳解】解:∵點(-4,y1),(1,y1)都在直線y=?3x+1上,∴y1=11+1=14,y1=?6+1=?4,∴y1>y1.故選:A.本題考查的是一次函數(shù)圖象上點的坐標特點,熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.5、B【解析】

根據(jù)分式和分數(shù)的基本性質(zhì),成立的條件等相關(guān)知識,分析求解.【詳解】“分數(shù)”與“分式”有許多共同點,我們在學習“分式”時,常常對比“分數(shù)”的相關(guān)知識進行學習,比如分數(shù)的基本性質(zhì),分數(shù)成立的條件等,這體現(xiàn)的數(shù)學思想方法是類比故選:B本題的解題關(guān)鍵是掌握分數(shù)和分式的基本性質(zhì)和概念.6、B【解析】

根據(jù)中位線定理和已知,易證明△PMN是等腰三角形,根據(jù)等腰三角形的性質(zhì)和已知條件即可求出∠PMN的度數(shù).【詳解】在四邊形ABCD中,∵M、N、P分別是AD、BC、BD的中點,∴PN,PM分別是△CDB與△DAB的中位線,∴PM=12AB,PN=12DC,PM∥AB,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN=180°-130°2故選B.本題考查了三角形中位線定理及等腰三角形的判定和性質(zhì),解題時要善于根據(jù)已知信息,確定應(yīng)用的知識.7、C【解析】

A、AB=BC,AD=DC,不能判定四邊形ABCD是平行四邊形,故此選項錯誤;B、AB∥CD,AD=BC不能判定四邊形ABCD是平行四邊形,故此選項錯誤;C、AB//CD,∠B=∠D能判定四邊形ABCD是平行四邊形,故此選項正確;D、∠A=∠B,∠C=∠D不能判定四邊形ABCD是平行四邊形,故此選項錯誤;故選C.8、D【解析】

根據(jù)D為AB的中點可求出AD的長,再根據(jù)在直角三角形中,30°角所對的直角邊等于斜邊的一半即可求出DE的長度.【詳解】解:∵D為AB的中點,AB=8,∴AD=4,∵DE⊥AC于點E,∠A=30°,∴DE=AD=2,故選D.本題考查了直角三角形的性質(zhì):直角三角形中,30°角所對的直角邊等于斜邊的一半.二、填空題(本大題共5個小題,每小題4分,共20分)9、1.【解析】根據(jù)平行四邊形的性質(zhì),對角相等以及鄰角互補,即可得出答案.解:∵平行四邊形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案為1.10、【解析】

根據(jù)方差的意義進行判斷.【詳解】因為甲組數(shù)有波動,而乙組的數(shù)據(jù)都相等,沒有波動,所以>.故答案為:>.此題考查方差,解題關(guān)鍵在于掌握方差的意義.11、1.【解析】

由S△BOE+S△COE=S△BOC即可解決問題.【詳解】連接OE.∵四邊形ABCD是正方形,AC=10,∴AC⊥BD,BO=OC=1,∵EG⊥OB,EF⊥OC,∴S△BOE+S△COE=S△BOC,∴?BO?EG+?OC?EF=?OB?OC,∴×1×EG+×1×EF=×1×1,∴EG+EF=1.故答案為1.本題考查正方形的性質(zhì),利用面積法是解決問題的關(guān)鍵,這里記住一個結(jié)論:等腰三角形底邊上一點到兩腰的距離之和等于腰上的高,填空題可以直接應(yīng)用,屬于中考常考題型12、乙對角線互相平分的四邊形是平行四邊形【解析】

根據(jù)平行四邊形的判定方法,即可解決問題.【詳解】根據(jù)平行四邊形的判定方法,我更喜歡乙的作法,他的作圖依據(jù)是:對角線互相平分的四邊形是平行四邊形.故答案為:乙;對角線互相平分的四邊形是平行四邊形.本題主要考查尺規(guī)作圖-復雜作圖,平行四邊形的判定定理,掌握尺規(guī)作線段的中垂線以及平行四邊形的判定定理,是解題的關(guān)鍵.13、【解析】

根據(jù)題意,可知點B到直線的距離最短,點C到直線的距離最長,求出兩個臨界點b的值,即可得到取值范圍.【詳解】解:根據(jù)題意,點,∵直線與(包括邊界)相交,∴點B到直線的距離了最短,點C到直線的距離最長,當直線經(jīng)過點B時,有,∴;當直線經(jīng)過點C時,有,∴;∴的取值范圍是:.本題考查了一次函數(shù)的圖像和性質(zhì),以及一次函數(shù)的平移問題,解題的關(guān)鍵是掌握一次函數(shù)的性質(zhì),一次函數(shù)的平移,正確選出臨界點進行解題.三、解答題(本大題共5個小題,共48分)14、(1)見解析;(2)5.【解析】

(1)依據(jù)矩形的性質(zhì),即可得出△AEG≌△CFH,進而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四邊形EGFH是平行四邊形;(2)由菱形的性質(zhì),即可得到EF垂直平分AC,進而得出AF=CF=AE,設(shè)AE=x,則FC=AF=x,DF=8-x,依據(jù)Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的長.【詳解】(1)證明:,,,(2)故答案為5.此題考查了菱形的性質(zhì)、矩形的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理的運用.注意準確作出輔助線是解此題的關(guān)鍵.15、(1)AC=,QD=;(2)是菱形,理由見解析;(3)DP2+EF2=4QD2,理由見解析;(4)垂直且相等,理由見解析.【解析】

(1)利用勾股定理求出AC,再證明△FDQ≌△FPA得到QD=AP,結(jié)合CD=CP求出結(jié)果;(2)先證明DE∥PF,結(jié)合EP∥DF得到四邊形DFPE是平行四邊形,再由EF⊥DP得到菱形;(3)根據(jù)菱形的性質(zhì)得到2DG=DP,2GF=EF,再證明QD=DF,最后利用勾股定理證明線段關(guān)系;(4)證明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延長BP,與AE交于點H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定關(guān)系.【詳解】解:(1)AC=,∵CF平分∠BCD,F(xiàn)D⊥CD,F(xiàn)P⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵點P在正方形ABCD對角線AC上,∴CD=CP=a,∴QD=AP=AC-PC=;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,則∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四邊形DFPE是平行四邊形,∵EF⊥DP,∴四邊形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四邊形DFPE是菱形,設(shè)DP與EF交于點G,∴2DG=DP,2GF=EF,∵∠ACD=45°,F(xiàn)P⊥AC,∴△PCQ為等腰直角三角形,∴∠Q=45°,可得△QDF為等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延長BP,與AE交于點H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,綜上:BP與AE的關(guān)系是:垂直且相等.本題考查了正方形的性質(zhì),等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),菱形的判定,勾股定理,知識點較多,解題時應(yīng)當注意各個小問之間的關(guān)系,找到能夠利用的結(jié)論和條件.16、(1)購買一個甲種足球需50元,購買一個乙種足球需70元;(2)這所學校再次購買1個甲種足球,3個乙種足球,才能使總花費最低.【解析】

(1)設(shè)購買一個甲種足球需x元,則購買一個乙種足球需(x+20),根據(jù)購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍列出方程解答即可;

(2)設(shè)這所學校再次購買a個甲種足球,根據(jù)題意列出不等式解答即可.【詳解】(1)設(shè)購買一個甲種足球需x元,則購買一個乙種足球需(x+20)元,根據(jù)題意,可得:=2×,解得:x=50,經(jīng)檢驗x=50是原方程的解,答:購買一個甲種足球需50元,購買一個乙種足球需70元;(2)設(shè)這所學校再次購買a個甲種足球,(50-a)個乙種足球,根據(jù)題意,可得:50-a≥a,解得:a≤,∵a為整數(shù),∴a≤1.設(shè)總花費為y元,由題意可得,y=50a+70(50-a)=-20a+2.∵-20<0,∴y隨x的增大而減小,∴a取最大值1時,y的值最小,此時50-a=3.答:這所學校再次購買1個甲種足球,3個乙種足球,才能使總花費最低.本題考查的知識點是分式方程的應(yīng)用和一元一次不等式的應(yīng)用,解題關(guān)鍵是根據(jù)題意列出方程.17、(1)yB=1x-1(1≤x≤6).(2)如果A,B兩種機器人各連續(xù)搬運5小時,B種機器人比A種機器人多搬運了150千克.【解析】試題分析:(1)設(shè)yB關(guān)于x的函數(shù)解析式為yB=kx+b(k≠0),將點(1,0)、(3,180)代入一次函數(shù)函數(shù)的解析式得到關(guān)于k,b的方程組,從而可求得函數(shù)的解析式;(2)設(shè)yA關(guān)于x的解析式為yA=k1x.將(3,180)代入可求得yA關(guān)于x的解析式,然后將x=6,x=5代入一次函數(shù)和正比例函數(shù)的解析式求得yA,yB的值,最后求得yA與yB的差即可.試題解析:(1)設(shè)yB關(guān)于x的函數(shù)解析式為yB=kx+b(k≠0).將點(1,0),(3,180)代入,得,解得:k=1,b=-1.∴yB關(guān)于x的函數(shù)解析式為yB=1x-1(1≤x≤6).(2)設(shè)yA關(guān)于x的函數(shù)解析式為yA=k1x.根據(jù)題意,得3k1=180.解得k1=60.∴yA=60x.當x=5時,yA=60×5=300;當x=6時,yB=1×6-1=450.450-300=150(千克).答:如果A,B兩種機器人各連續(xù)搬運5小時,B種機器人比A種機器人多搬運了150千克.18、(1)見解析;(2)【解析】

(1)證明,得出,即可得出結(jié)論;(2)由菱形的性質(zhì)得出,證明四邊形ABDE是平行四邊形,,得出,在中,由等腰直角三角形的性質(zhì)和勾股定理即可求出EF的長.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,,∵BD平分,,,,是菱形;(2)解:∵四邊形ABCD是菱形,,,∴四邊形ABDE是平行四邊形,,,,,是等腰直角三角形,.本題考查了平行四邊形的性質(zhì)與判定、菱形的判定與性質(zhì)、等腰三角形的判定以及等腰直角三角形的判定與性質(zhì);熟練掌握菱形判定與性質(zhì)是解決問題的關(guān)鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、1【解析】

先求出x的值,然后提取公因式xy分解因式,再把數(shù)值代入得出答案.【詳解】解:∵,∴x=-5∴xy(x+y)=-5×3×(-2)

=1.此題主要考查了提取公因式法分解因式,正確提取公因式是解題關(guān)鍵.20、7【解析】

根據(jù)勾股定理的幾何意義可得正方形S的面積,繼而根據(jù)正方形面積公式進行求解即可.【詳解】根據(jù)勾股定理的幾何意義,可知S=SE+SF=SA+SB+SC+SD=49cm2,所以正方形S的邊長為=7cm,故答案為7.本題考查了勾股定理,熟悉勾股定理的幾何意義是解題的關(guān)鍵.21、【解析】

根據(jù)一次函數(shù)的性質(zhì),k>0時,y隨x的增大而增大;k<0時,y隨x的增大而減小,從而得出答案.【詳解】一次函數(shù)y=x+1,,y隨x的增大而減小∵x1<x2∴y1>y2故答案為:>本題考查了一次函數(shù)的增減性,熟練掌握相關(guān)知識點是解題關(guān)鍵.22、(,-4)【解析】

設(shè)點B坐標為(a,b),由點C(0,-2)是BD中點可得b=-4,D(-a,0),根據(jù)反比例函數(shù)的對稱性質(zhì)可得A(-a,4),根據(jù)A、D兩點坐標可得AD⊥x軸,根據(jù)△ABD的面積公式列方程可求出a值,即可得點B坐標.【詳解】設(shè)點B坐標為(a,b),∵點C(0,-2)是BD中點,點D在x軸上,∴b=-4,D(-a,0),∵直線y=mx與雙曲線y=交于A、B兩點,∴A(-a,4),∴AD⊥x軸,AD=4,∵△ABD的面積為6,∴S△ABD=AD×2a=6∴a=,∴點B坐標為(,-4)本題考查反比例函數(shù)的性質(zhì),反比例函數(shù)圖象是以原點為對稱中心的雙曲線,根據(jù)反比例函數(shù)的對稱性表示出A點坐標是解題關(guān)鍵.23、x<-1【解析】

根據(jù)函數(shù)圖像作答即可.【詳解】∵-x+1>kx+b∴l(xiāng)1的圖像應(yīng)在l2上方∴根據(jù)圖像得:x<-1.故答案為:x<-1.本題考查的知識點是函數(shù)的圖像,解題關(guān)鍵是根據(jù)圖像作答.二、解答題(本大題共3個小題,共30分)24、(1)D(1,3);(2)①詳見解析;②H(,3);(3)≤S≤.【解析】

(1)如圖①,在Rt△ACD中求出CD即可解決問題;

(2)①根據(jù)HL證明即可;

②,設(shè)AH=BH=m,則HC=BC-BH=5-m,在Rt△AHC中,根據(jù)AH2=HC2+AC2,構(gòu)建方程求出m即可解決問題;

(3)如圖③中,當點D在線段BK上時,△DEK的面積最小,當點D在BA的延長線上時,△D′E′K的面積最大,求出面積的最小值以及最大值即可解決問題;【詳解】(1)如圖①中,∵A(5,0),B(0,3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論