第2章 圓與方程章末題型歸納總結(jié)(原卷版)_第1頁
第2章 圓與方程章末題型歸納總結(jié)(原卷版)_第2頁
第2章 圓與方程章末題型歸納總結(jié)(原卷版)_第3頁
第2章 圓與方程章末題型歸納總結(jié)(原卷版)_第4頁
第2章 圓與方程章末題型歸納總結(jié)(原卷版)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第2章圓與方程章末題型歸納總結(jié)目錄模塊一:本章知識思維導(dǎo)圖模塊二:典型例題經(jīng)典題型一:求圓的方程經(jīng)典題型二:求軌跡方程經(jīng)典題型三:直線與圓位置關(guān)系經(jīng)典題型四:圓與圓的位置關(guān)系經(jīng)典題型五:弦長、切線、切線長、切點弦問題經(jīng)典題型六:圓中范圍與最值問題經(jīng)典題型七:面積問題模塊三:數(shù)學(xué)思想方法①分類討論思想②轉(zhuǎn)化與化歸思想③數(shù)形結(jié)合思想

模塊一:本章知識思維導(dǎo)圖

模塊二:典型例題經(jīng)典題型一:求圓的方程例1.(2023·陜西榆林·高二校聯(lián)考期末)若圓經(jīng)過點,,且圓心在直線:上,則圓的方程為(

)A. B.C. D.例2.(2023·全國·高二專題練習(xí))已知圓經(jīng)過拋物線與軸的交點,且過點,則圓的方程為.例3.(2023·安徽合肥·高二??奸_學(xué)考試)已知圓心為的圓經(jīng)過點和,且圓心在直線:上,則圓的方程為.例4.(2023·浙江·高二浙江省普陀中學(xué)校聯(lián)考期中)平面直角坐標(biāo)系中,已知點,,,,當(dāng)四邊形的周長最小時,的外接圓的方程為.例5.(2023·河南平頂山·高二汝州市第一高級中學(xué)??茧A段練習(xí))的三個頂點分別是,則的外接圓的方程為.例6.(2023·遼寧大連·高二大連八中??计谥校按竽聼熤?,長河落日圓”體現(xiàn)了我國古代勞動人民對于圓的認(rèn)知.已知,,則以為直徑的圓的方程為(

)A. B.C. D.例7.已知O為原點,點為圓心,以為直徑的圓的方程為(

)A. B.C. D.例8.(2023·全國·高二專題練習(xí))已知圓,則圓關(guān)于點對稱的圓的方程為(

)A. B.C. D.例9.(2023·全國·高二專題練習(xí))過坐標(biāo)原點,且在x軸和y軸上的截距分別為2和3的圓的方程為(

)A. B.C. D.例10.(2023·全國·高二專題練習(xí))已知一個圓的方程滿足:圓心在點,且過原點,則它的方程為(

)A. B.C. D.經(jīng)典題型二:求軌跡方程例11.(2023·高二課時練習(xí))已知、兩定點.若動點滿足,求動點的軌跡方程.例12.(2023·高二課時練習(xí))已知定點,動點在圓上,點在線段上,且,求點的軌跡方程.例13.(2023·高二課時練習(xí))已知動直線(其中且為變動參數(shù))和圓相交于、兩點,求弦的中點的軌跡方程.例14.(2023·高二課時練習(xí))的頂點B,C的坐標(biāo)分別是,,頂點A在圓上運動,求的重心G的軌跡方程.例15.(2023·高二課時練習(xí))從定點向圓任意引一割線交圓于P,Q兩點,求弦PQ的中點M的軌跡方程.例16.(2023·高二單元測試)已知圓(1)若圓C的切線在x軸、y軸上的截距相等,求切線方程;(2)從圓C外一點向該圓引一條切線,切點為M,且有為坐標(biāo)原點,點P的軌跡方程.例17.(2023·江蘇南通·高二金沙中學(xué)??茧A段練習(xí))已知點和圓為圓上的動點.(1)求的中點的軌跡方程;(2)若,求線段中點的軌跡方程.例18.(2023·云南紅河·高二開遠市第一中學(xué)校??茧A段練習(xí))已知圓C經(jīng)過點且圓心C在直線上.(1)求圓C方程;(2)若E點為圓C上任意一點,且點,求線段EF的中點M的軌跡方程.例19.(2023·全國·高二專題練習(xí))已知圓的圓心在軸上,并且過,兩點.(1)求圓的方程;(2)若為圓上任意一點,定點,點滿足,求點的軌跡方程.例20.(2023·高二課時練習(xí))如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上異于A,B兩點的動點,連接BC并延長至D,使得|CD|=|BC|,求線段AC與OD的交點P的軌跡方程.

例21.(2023·高二課時練習(xí))已知線段AB的端點B的坐標(biāo)為,端點A在圓C:上運動,求線段AB的中點P的軌跡方程,并說明它的軌跡是什么.例22.(2023·高二課時練習(xí))已知圓:.(1)求圓的圓心坐標(biāo)及半徑;(2)設(shè)直線:①求證:直線與圓恒相交;②若直線與圓交于,兩點,弦的中點為,求點的軌跡方程,并說明它是什么曲線.例23.(2023·全國·高二專題練習(xí))已知圓.過原點的動直線與圓相交于不同的兩點,求線段AB的中點M的軌跡方程.經(jīng)典題型三:直線與圓位置關(guān)系例24.(2023·全國·高二專題練習(xí))關(guān)于曲線C:,下列說法正確的是(

)A.曲線C可能經(jīng)過點B.若,過原點與曲線C相切的直線有兩條C.若,曲線C表示兩條直線D.若,則直線被曲線C截得弦長等于例25.(2023·北京·高二中央民族大學(xué)附屬中學(xué)校考期末)已知A,B(異于坐標(biāo)原點)是圓與坐標(biāo)軸的兩個交點,則下列點M中,使得為鈍角三角形的是(

)A. B. C. D.例26.(2023·四川成都·高二校聯(lián)考期中)直線與圓的位置關(guān)系為(

)A.相切 B.相離 C.相交 D.不能確定例27.(2023·廣東珠?!じ叨楹J械诙袑W(xué)??计谥校┮阎獔A,直線.下列說法正確的是(

)A.直線與圓可能相切B.圓被軸截得的弦長為C.直線恒過定點D.直線被圓截得弦長存在最小值,此時直線的方程為例28.(2023·全國·高二專題練習(xí))對于任意實數(shù),圓與直線的位置關(guān)系是(

)A.相交 B.相切C.相離 D.與的取值有關(guān)例29.(2023·高二課時練習(xí))若圓C:上存在到的距離為1的點,則實數(shù)m的取值范圍為(

)A. B. C. D.例30.(2023·貴州黔東南·高二??计谥校┤糁本€與圓總有兩個不同的交點,則實數(shù)b的取值范圍是(

)A. B. C.或 D.或例31.(2023·高二課時練習(xí))若無論實數(shù)取何值,直線與圓相交,則的取值范圍為(

)A. B. C. D.例32.(2023·全國·高二專題練習(xí))已知平面直角坐標(biāo)系內(nèi)一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構(gòu)成圖形的面積為(

)A. B. C. D.例33.(2023·四川廣安·高二四川省廣安代市中學(xué)校??茧A段練習(xí))設(shè)點,若在圓上存在點,使得,則的取值范圍是()A. B. C. D.例34.(2023·貴州·高二校聯(lián)考期末)圓:與直線:的位置關(guān)系為(

)A.相切 B.相離 C.相交 D.無法確定例35.(2023·全國·高二專題練習(xí))直線與曲線的交點個數(shù)為(

)A.1個 B.2個 C.3個 D.4個例36.(2023·高二單元測試)若圓上至少有三個不同的點到直線的距離為,則的取值不可能是(

)A.-2 B.0C.1 D.3例37.(2023·遼寧營口·高二??茧A段練習(xí))已知曲線與直線有兩個不同的交點,則實數(shù)的取值范圍是(

)A. B. C. D.經(jīng)典題型四:圓與圓的位置關(guān)系例38.(2023·福建福州·高二校聯(lián)考期末)已知圓,圓,則下列不是,兩圓公切線的直線方程為()A. B.C. D.例39.(2023·全國·高二專題練習(xí))已知直線是圓的切線,并且點到直線的距離是2,這樣的直線有(

)A.1條 B.2條 C.3條 D.4條例40.(2023·四川南充·高二統(tǒng)考期末)已知點,,若點A到直線l的距離為1,點B到直線l的距離為4,則滿足條件的有(

)條A.1 B.2 C.3 D.4例41.(2023·山西朔州·高二??茧A段練習(xí))圓,圓,則兩圓的公切線有(

)A.0條 B.1條 C.2條 D.3條例42.(2023·高二課時練習(xí))圓和圓的位置關(guān)系是(

)A.相交 B.相切 C.相離 D.內(nèi)含例43.(2023·山西·高二山西大附中??计谥校┮韵滤膫€命題表述正確的是(

)A.直線恒過定點B.兩圓與的公共弦所在的直線方程為C.已知圓:,為直線上一動點,過點向圓引條切線,其中A為切點,則的最小值為D.圓:與圓:恰有三條公切線例44.(2023·廣西河池·高二校聯(lián)考階段練習(xí))已知圓A:與圓B:,則兩圓的公切線的條數(shù)為(

)A.0 B.1 C.2 D.3例45.(2023·內(nèi)蒙古包頭·高二統(tǒng)考期末)已知圓與圓交于兩點,則(

)A. B. C. D.例46.(2023·全國·高二專題練習(xí))已知圓:與圓:相內(nèi)切,則與的公切線方程為(

)A. B.C. D.例47.(2023·全國·高二專題練習(xí))已知圓與圓相交所得的公共弦長為,則圓的半徑(

)A. B. C.或1 D.經(jīng)典題型五:弦長、切線、切線長、切點弦問題例48.(2023·全國·高二專題練習(xí))在平面直角坐標(biāo)系中,過點作圓的兩條切線,切點分別為.則直線的方程為(

)A. B.C. D.例49.(2023·全國·高二專題練習(xí))已知過圓外一點做圓的兩條切線,切點為兩點,求所在的直線方程為(

)A. B.C. D.例50.(2023·高二課時練習(xí))幾何學(xué)史上有一個著名的米勒問題:“設(shè)點M,N是銳角∠AQB的一邊QA上的兩點,試在QB邊上找一點P,使得∠MPN最大.”如圖,其結(jié)論是:點P為過M,N兩點且和射線QB相切的圓與射線QB的切點.根據(jù)以上結(jié)論解決以下問題:在平面直角坐標(biāo)系中,給定兩點,,點P在x軸上移動,當(dāng)∠MPN取最大值時,點P的橫坐標(biāo)是(

)A.1 B.-7 C.1或-7 D.2或-7例51.(2023·全國·高二專題練習(xí))過點作圓的切線,則切線方程為(

)A. B.C. D.或例52.(2023·全國·高二專題練習(xí))已知圓為圓O上位于第一象限的一點,過點M作圓O的切線l.當(dāng)l的橫縱截距相等時,l的方程為(

)A. B.C. D.例53.已知直線經(jīng)過點,且與圓相切,則的方程為(

)A. B. C. D.例54.(2023·全國·高二專題練習(xí))過點與圓相切的兩條直線的夾角為,則(

)A. B. C. D.例55.(2023·全國·高二專題練習(xí))過直線上一點向圓O:作兩條切線,設(shè)兩切線所成的最大角為,則(

)A. B. C. D.例56.(2023·江蘇·高二南京市人民中學(xué)校聯(lián)考開學(xué)考試)已知是上一點,過點作圓的兩條切線,切點分別為,當(dāng)直線與平行時,(

)A. B. C. D.4例57.(2023·全國·高二專題練習(xí))過點與圓相切的兩條直線的夾角為,則(

)A.1 B. C. D.例58.(2023·全國·高二專題練習(xí))已知圓,直線上動點,過點作圓的一條切線,切點為,則的最小值為(

)A.1 B. C. D.2例59.(2023·全國·高二專題練習(xí))設(shè)點為直線上任意一點,過點作圓的切線,切點分別為,則直線必過定點(

)A. B. C. D.例60.(2023·全國·高二專題練習(xí))已知圓,直線的方程為,若在直線上存在點,過點作圓的切線,切點分別為點,使得為直角,則實數(shù)的取值范圍為(

)A. B.C. D.例61.(2023·江蘇揚州·高二統(tǒng)考開學(xué)考試)已知圓,直線則直線被圓截得的弦長的最小值為(

)A.5 B.4 C.10 D.2例62.(2023·廣西南寧·高二南寧三中校考期末)已知圓:,直線:,直線與圓交于、,則的最大值為(

)A.1 B. C. D.例63.(2023·湖北隨州·高二隨州市曾都區(qū)第一中學(xué)校考期末)若直線與圓交于,兩點,當(dāng)最小時,劣弧的長為(

)A. B. C. D.例64.(2023·全國·高二專題練習(xí))已知直線與圓交于兩點,則(

)A. B. C. D.例65.(2023·江蘇南通·高二江蘇省如皋中學(xué)校考開學(xué)考試)當(dāng)圓截直線所得的弦長最短時,實數(shù)(

)A. B. C. D.例66.(2023·江蘇宿遷·高二校考階段練習(xí))直線與圓相交于P,Q兩點.若,則實數(shù)k的取值范圍是(

)A. B.C.[-1,1] D.[-,3]例67.(2023·高二單元測試)設(shè),均為正實數(shù),若直線被圓截得的弦長為2,則的取值范圍是(

)A. B.C. D.例68.(2023·河北滄州·高二統(tǒng)考期末)直線與曲線交于A,B兩點,若,則t的值有(

)A.1個 B.2個 C.3個 D.4個經(jīng)典題型六:圓中范圍與最值問題例69.(多選題)(2023·全國·高二專題練習(xí))若實數(shù)、滿足條件,則下列判斷正確的是(

)A.的范圍是 B.的范圍是C.的最大值為1 D.的范圍是例70.(2023·河南三門峽·高二統(tǒng)考期末)過作圓與圓的切線,切點分別為,,若,則的最小值為.例71.(2023·遼寧大連·高二大連八中??茧A段練習(xí))圓上點到直線距離的最小值是.例72.(2023·全國·高二隨堂練習(xí))已知點與圓,P是圓C上任意一點,則的最小值是.例73.(2023·全國·高二專題練習(xí))點在動直線上的投影為點M,若點,那么的最小值為.例74.(2023·上海浦東新·高二??计谀┕畔ED著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點、的距離之比為定值(且)的點的軌跡是圓”.后來人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標(biāo)系中,、,點滿足,則的最小值為.例75.(2023·全國·高二專題練習(xí))設(shè)、為正數(shù),若直線被圓截得弦長為,則的最小值為.例76.(2023·安徽·高二馬鞍山二中校聯(lián)考階段練習(xí))已知,則的最小值為.例77.(2023·全國·高二專題練習(xí))希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知動點在圓上,若點,點,則的最小值為.例78.(2023·四川成都·高二??茧A段練習(xí))若直線與圓相交于兩點,則弦長的最小值為.例79.(2023·全國·高二專題練習(xí))已知直線與圓有公共點,且與直線交于點,則的最小值是.例80.(2023·全國·高二專題練習(xí))已知實數(shù)x,y滿足方程,則(1)的最大值和最小值分別為和;(2)y-x的最大值和最小值分別為和;(3)的最大值和最小值分別為和.例81.(2023·江蘇南京·高二南京市中華中學(xué)??计谥校┮阎本€與相交于點,過點作圓的切線,切點為,則的最大值為.例82.(2023·貴州·高二校聯(lián)考階段練習(xí))已知圓:,為圓上任一點,則的最大值為.例83.(2023·全國·高二專題練習(xí))已知實數(shù),,,滿足,,,則的最大值是.經(jīng)典題型七:面積問題例84.(2023·全國·高二專題練習(xí))直線分別與軸,軸交于兩點,點在圓上,則面積的取值范圍.例85.(2023·遼寧朝陽·高二校聯(lián)考階段練習(xí))以原點O為圓心作單位圓O,直線l與直線平行,且過點,P為直線l上一動點,過點P作直線與圓O相切于點B,則面積的最小值為.例86.(2023·全國·高二期中)曲線圍成的圖形的面積是.例87.(2023·廣東揭陽·高二??计谥校┮阎本€與圓交于兩點,以線段為直徑作圓,該圓的面積的取值范圍為.例88.(2023·安徽蕪湖·高二安徽省無為襄安中學(xué)??计谥校┰谥?,為的角平分線,D在上,且,則面積的最大值為.例89.(2023·河北唐山·高二統(tǒng)考期末)已知圓:,圓:,過圓上的任意一點P作圓的兩條切線,切點為A,B,則四邊形面積的最大值為.例90.(2023·廣東深圳·高二統(tǒng)考期末)已知圓,點在直線上運動,過作的兩條切線,切點分別為、,當(dāng)四邊形的面積最小時,.例91.(2023·高二課時練習(xí))已知圓的方程為,設(shè)該圓過點的最長弦和最短弦分別為AC和BD,求四邊形ABCD的面積.例92.(2023·安徽阜陽·高二安徽省阜南實驗中學(xué)??奸_學(xué)考試)已知圓方程:,圓相交點A、B.(1)求經(jīng)過點A、B的直線方程.(2)求的面積.例93.(2023·全國·高二專題練習(xí))已知是直線上的動點,,是圓的兩條切線,,是切點.求四邊形面積的最小值.例94.(2023·上?!じ叨n}練習(xí))若點為圓的弦的中點.求:(1)直線的方程;(2)的面積.模塊三:數(shù)學(xué)思想方法① 分類討論思想例95.圓M:與兩個坐標(biāo)軸共有3個公共點,則實數(shù)m的值是(

)A.1或2 B.1或4 C.0或4 D.0或1例96.過點作與圓相切的直線l,則直線l的方程為(

)A. B.C.或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論