第02講 6.2.1排列+6.2.2排列數(shù)(解析版)_第1頁
第02講 6.2.1排列+6.2.2排列數(shù)(解析版)_第2頁
第02講 6.2.1排列+6.2.2排列數(shù)(解析版)_第3頁
第02講 6.2.1排列+6.2.2排列數(shù)(解析版)_第4頁
第02講 6.2.1排列+6.2.2排列數(shù)(解析版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第02講6.2.1排列+6.2.2排列數(shù)課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①了解排列的意義。②掌握常見的排列處理方法。③會(huì)用排列的相關(guān)方法解決簡單的排列問題。④理解與掌握排列數(shù)公式⑤熟練應(yīng)用排列數(shù)公式及性質(zhì)求解與排列數(shù)有關(guān)的量,并能證明恒等式,求方程的解及不等式的解。⑥能解決一些簡單的實(shí)際問題.熟練應(yīng)用公式表達(dá)排列的相關(guān)關(guān)系,及求解常見的排列問題1.通過本節(jié)課學(xué)習(xí),要求在掌握排列的意義基礎(chǔ)上,能解決簡單的排列問題;2能準(zhǔn)確判斷排列問題;3.能準(zhǔn)確用排列數(shù)公式表達(dá)排列的關(guān)系,并能應(yīng)用排列數(shù)的公式求解與排列有關(guān)的實(shí)際問題與數(shù)學(xué)問題;知識點(diǎn)01:排列(1)定義:一般地,從個(gè)不同元素中取出()個(gè)元素,并按照一定的順序排成一列,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)排列.(2)相同排列:兩個(gè)排列的元素完全相同,且元素的排列順序也相同.【即學(xué)即練1】(2023·全國·高二課堂例題)從5位同學(xué)中選3位排成一列,共有多少種不同的排法?【答案】60種【詳解】從5位同學(xué)中選3位排成一列,對應(yīng)于從5個(gè)不同元素中取出3個(gè)元素的一個(gè)排列,所以不同排法的種數(shù)是(種).知識點(diǎn)02:排列數(shù)與排列數(shù)公式(1)定義:從個(gè)不同元素中取出()個(gè)元素的所有不同排列的個(gè)數(shù),叫做從個(gè)不同元素中取出個(gè)元素的排列數(shù),用符號表示.(2)排列數(shù)公式①(連乘形式):,,②(階乘形式),,(3)全排列:把個(gè)不同的元素全部取出的一個(gè)排列,叫做個(gè)元素的一個(gè)全排列,用符號表示.(4)階乘:正整數(shù)1到的連乘積,叫做的階乘,用符號表示.【即學(xué)即練2】(2023上·高二課時(shí)練習(xí))將6本不同的書排成一排,有多少種不同的排法?【答案】720【詳解】將6本不同的書排成一排,一共有種不同的排法.【即學(xué)即練3】(2021·高二課時(shí)練習(xí))證明,并用它來化簡.【答案】證明見詳解;【詳解】證明,即證.【即學(xué)即練4】(2023·江蘇·高二專題練習(xí))解方程:.【答案】【詳解】由題設(shè),則,所以,可得或,又且,則且,所以.題型01排列的定義【典例1】1(2023下·吉林長春·高二長春外國語學(xué)校校考階段練習(xí))下面問題中,是排列問題的是(

)A.由1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的三位數(shù)B.從40人中選5人組成籃球隊(duì)C.從100人中選2人抽樣調(diào)查D.從1,2,3,4,5中選2個(gè)數(shù)組成集合【答案】A【詳解】根據(jù)排列及排列數(shù)的定義,可得:對于A中,由1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的三位數(shù),符合排列的定義,是排列問題;對于B中,從40人中選5人組成籃球隊(duì),與順序無關(guān)的問題,不是排列問題;對于C中,從100人中選2人抽樣調(diào)查,與順序無關(guān)的問題,不是排列問題;對于D中,從1,2,3,4,5中選2個(gè)數(shù)組成集合,與順序無關(guān)的問題,不是排列問題.故選:A.【典例2】(2023·高二課時(shí)練習(xí))給出下列問題:①有10位同學(xué),每兩人互通一次電話,共通了多少次電話?②有10位同學(xué),每兩人互寫一封信,共寫了多少封信?③有10位同學(xué),每兩人互握一次手,共握了多少次手?以上問題中,屬于排列問題的是.(寫出所有滿足要求的問題序號)【答案】②【詳解】對于①,假設(shè)10位同學(xué)中含甲乙,甲與乙通一次電話,也就是乙與甲通一次電話,沒有順序區(qū)別,故不是排列問題;對于②,假設(shè)10位同學(xué)中含甲乙,甲給乙寫一封信,跟乙給甲寫一封信,是不一樣的,是有順序區(qū)別的,故屬于排列問題;對于③,假設(shè)10位同學(xué)中含甲乙,甲與乙握一次手,也就是乙與甲握一次手,沒有順序區(qū)別,故不是排列問題,故答案為:②【典例3】(2023·高二課時(shí)練習(xí))下列問題屬于排列問題的是()①從10個(gè)人中選2人分別去種樹和掃地;②從10個(gè)人中選2人去掃地;③從班上30名男生中選出5人組成一個(gè)籃球隊(duì);④從數(shù)字5,6,7,8中任取兩個(gè)不同的數(shù)作冪運(yùn)算.A.①④

B.①②

C.③④

D.①③④【答案】A【詳解】①從10個(gè)人中選2人分別去種樹和掃地,與順序有關(guān),故是排列;②從10個(gè)人中選2人去掃地,與順序無關(guān),故不是排列;③從班上30名男生中選出5人組成一個(gè)籃球隊(duì),與順序無關(guān),故不是排列;④從數(shù)字5,6,7,8中任取兩個(gè)不同的數(shù)作冪運(yùn)算,與順序有關(guān),故是排列,故選:A.【變式1】(2023·全國·高二專題練習(xí))判斷下列問題是否為排列問題:(1)北京、上海、天津三個(gè)民航站之間的直達(dá)航線的飛機(jī)票的價(jià)格(假設(shè)來回的票價(jià)相同);(2)選2個(gè)小組分別去植樹和種菜;(3)選2個(gè)小組去種菜;(4)選10人組成一個(gè)學(xué)習(xí)小組;(5)選3個(gè)人分別擔(dān)任班長、學(xué)習(xí)委員、生活委員;(6)某班40名學(xué)生在假期相互打電話.【答案】(1)不是(2)是(3)不是(4)不是(5)是(6)是【詳解】(1)票價(jià)只有三種,雖然機(jī)票是不同的,但票價(jià)是一樣的,不存在順序問題,所以不是排列問題.(2)植樹和種菜是不同的,存在順序問題,屬于排列問題.(3)不存在順序問題,不屬于排列問題.(4)不存在順序問題,不屬于排列問題.(5)每個(gè)人的職務(wù)不同,例如甲當(dāng)班長或當(dāng)學(xué)習(xí)委員是不同的,存在順序問題,屬于排列問題.(6)A給B打電話與B給A打電話是不同的,所以存在著順序問題,屬于排列問題.所以在上述各題中(2)(5)(6)是排列問題,(1)(3)(4)不是排列問題.【變式2】(2022·高二課時(shí)練習(xí))下列問題是排列問題嗎?(1)北京、上海、天津三個(gè)民航站之間的直達(dá)航線的飛機(jī)票的價(jià)格(假設(shè)來回的票價(jià)相同);(2)某班40名學(xué)生在假期相互寫信;(3)會(huì)場有50個(gè)座位,要求選出3個(gè)座位,有多少種方法?若選出3個(gè)座位安排三位客人,又有多少種方法?(4)平面上有5個(gè)點(diǎn),其中任意3個(gè)點(diǎn)不共線,這5個(gè)點(diǎn)最多可確定多少條直線?可確定多少條射線?【答案】(1)不是排列問題.(2)是排列問題.(3)選3個(gè)座位不是排列問題;選3個(gè)座位安排三位客人是排列問題.(4)確定直線不是排列問題,確定射線是排列問題【詳解】(1)來回的票價(jià)是一樣的,不存在順序問題,所以不是排列問題.(2)A給B寫信與B給A寫信是不同的兩件事,所以存在著順序,屬于排列問題.(3)任選3個(gè)座位,與順序無關(guān),不是排列問題;選3個(gè)座位安排三位客人,與順序有關(guān),故是排列問題.(4)直線與兩點(diǎn)的順序無關(guān),故確定直線不是排列問題,射線與兩點(diǎn)的順序有關(guān),故確定射線是排列問題.題型02排列的列舉問題【典例1】(2023·高二課時(shí)練習(xí))北京、廣州、南京、天津4個(gè)城市相互通航,應(yīng)該有種機(jī)票.【答案】12【詳解】列出每一個(gè)起點(diǎn)和終點(diǎn)情況,如圖所示.故符合題意的機(jī)票種類有:北京→廣州,北京→南京,北京→天津,廣州→南京、廣州→天津、廣州→北京,南京→天津,南京→北京,南京→廣州,天津→北京,天津→廣州,天津→南京,共12種,故答案為:12【典例2】(2023上·高二課時(shí)練習(xí))寫出從a、b、c、d四個(gè)元素中任取兩個(gè)不同元素的所有排列.【答案】所有的排列是ab、ac、ad、ba、bc、bd、ca、cb、cd、da、db、dc.【詳解】先畫出下面的樹形圖:

于是可知,所有的排列是ab、ac、ad、ba、bc、bd、ca、cb、cd、da、db、dc.【典例3】(2023·高二課時(shí)練習(xí))請列出下列排列:(1)從4個(gè)不同元素中任取3個(gè)元素的所有排列;(2)從7個(gè)不同元素中任取2個(gè)元素的所有排列.【答案】(1)答案見解析(2)答案見解析【詳解】(1)根據(jù)題意,從4個(gè)不同元素中任取3個(gè)元素的所有排列共有如下種:.(2)從7個(gè)不同元素中任取2個(gè)元素的所有排列共有如下種:.【變式1】(2023·江蘇·高二專題練習(xí))從0,1,2,3這四個(gè)數(shù)字中,每次取出三個(gè)不同的數(shù)字排成一個(gè)三位數(shù),能組成多少個(gè)不同的三位數(shù)?并寫出這些三位數(shù).【答案】18個(gè),答案見解析.【詳解】畫出樹形圖,如圖:由樹形圖知,符合條件的三位數(shù)共有18個(gè),它們是102,103,120,123,130,132,201,203,210,213,230,231,301,302,310,312,320,321.【變式2】(2023·江蘇·高二專題練習(xí))寫出下列問題的所有排列:(1)從1,2,3,4四個(gè)數(shù)字中任取兩個(gè)數(shù)字組成兩位數(shù),共有多少個(gè)不同的兩位數(shù)?(2)由1,2,3,4四個(gè)數(shù)字能組成多少個(gè)沒有重復(fù)數(shù)字的四位數(shù)?試全部列出.【答案】(1)12;(2)24個(gè),答案見解析.【詳解】(1)所有兩位數(shù)是12,21,13,31,14,41,23,32,24,42,34,43,共有12個(gè)不同的兩位數(shù).(2)畫出樹狀圖,如圖:由樹狀圖知,所有的四位數(shù)為:1234,1243,1324,1342,1423,1432,2134,2143,2314,2341,2413,2431,3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321,共24個(gè)沒有重復(fù)數(shù)字的四位數(shù).題型03排列數(shù)的計(jì)算、化簡與證明【典例1】(2023下·江蘇蘇州·高二江蘇省蘇州實(shí)驗(yàn)中學(xué)??茧A段練習(xí))可表示為()A. B.C. D.【答案】B【詳解】,故選:B.【典例2】(多選)(2023上·河南·高二校聯(lián)考階段練習(xí))下列等式正確的是(

)A. B.C. D.【答案】AC【詳解】,故A正確;由上述可知,因此,故B錯(cuò)誤;,故C正確;由上述可知,故D錯(cuò)誤.故選:AC.【典例3】(2023·江蘇·高二專題練習(xí))求不等式的解集.【答案】【詳解】由題設(shè),則,所以,又且,則且,所以且,則解集為.【變式1】(2023下·河北張家口·高二校聯(lián)考階段練習(xí))可表示為(

)A. B. C. D.【答案】A【詳解】中總共有個(gè)數(shù)連乘,故.故選:A【變式2】(2023·江蘇·高二專題練習(xí)).【答案】120【詳解】由.故答案為:【變式3】(2023·江蘇·高二專題練習(xí))解不等式:【答案】6【詳解】由原不等式得且,所以,即,解得且,所以.題型04全排列問題【典例1】(2023上·高二課時(shí)練習(xí))A,B,C三名同學(xué)照相留念,成“一”字形排隊(duì),所有排列的方法種數(shù)為(

)A.3種 B.4種C.6種 D.12種【答案】C【詳解】由題意所有排列的方法種數(shù)為,故答案為:C【典例2】(2023下·江蘇鎮(zhèn)江·高二??计谀?名鄉(xiāng)村振興志愿者分配到科技助農(nóng),文藝文化,科普宣傳和鄉(xiāng)村環(huán)境治理4個(gè)項(xiàng)目進(jìn)行培訓(xùn)(每個(gè)項(xiàng)目都有志愿者參加),每名志愿者只分配到1個(gè)項(xiàng)目,志愿者小王不去文藝文化項(xiàng)目,則不同的分配方案共有(

)A.12種 B.24種 C.18種 D.48種【答案】C【詳解】由題意,4名志愿者任意分配共有種分法,若志愿者小王去文藝文化項(xiàng)目,其它3名任意分配有種分法,所以志愿者小王不去文藝文化項(xiàng)目的分配方法有種.故選:C【典例3】(2023·上海閔行·統(tǒng)考一模)今年中秋和國慶共有連續(xù)天小長假,某單位安排甲、乙、丙三名員工值班,每天都需要有人值班.任選兩名員工各值天班,剩下的一名員工值天班,且每名員工值班的日期都是連續(xù)的,則不同的安排方法數(shù)為.【答案】【詳解】三人值班的天數(shù)分別為、、,先確定值班天的人,有種選擇,再將三個(gè)人全排即可,所以,不同的排法種數(shù)為種.故答案為:.【變式1】(2023下·云南曲靖·高二??计谥校┤舭延⒄Z單詞“word”的字母順序?qū)戝e(cuò)了,則可能出現(xiàn)的錯(cuò)誤共有(

)A.24種 B.23種 C.12種 D.11種【答案】B【詳解】“word”一共有個(gè)不同的字母,這個(gè)字母全排列有種方法,其中正確的有種,所以錯(cuò)誤的有種.故選:B【變式2】(2023下·黑龍江雞西·高二雞西實(shí)驗(yàn)中學(xué)??计谥校?月12日在雞西實(shí)驗(yàn)中學(xué)報(bào)告廳開展了以“預(yù)防災(zāi)害風(fēng)險(xiǎn),守護(hù)美好家園”為主題的消防安全知識專題講座,還要到3個(gè)學(xué)校開講,一個(gè)學(xué)校講一次,不同的次序種數(shù)為(

)A.3 B. C.9 D.6【答案】D【詳解】要到3個(gè)學(xué)校開講,一個(gè)學(xué)校講一次,不同的次序種數(shù)為,故選:D.【變式3】(2023下·重慶沙坪壩·高三重慶一中??茧A段練習(xí))8個(gè)完全相同的球放入編號1,2,3的三個(gè)空盒中,要求放入后3個(gè)盒子不空且數(shù)量均不同,則有種放法.【答案】12【詳解】共兩類分組方法:將8個(gè)完全相同的小球分為1,2,5三堆或1,3,4三堆.每類都將三堆不同個(gè)數(shù)的球放入編號1,2,3的三個(gè)空盒中,有種方法,故共有種方法.故答案為:12.題型05元素(位置)有限制條件的排列問題【典例1】(2023上·全國·高三專題練習(xí))4個(gè)人排成一排,則甲不站兩邊的站法有()A.8 B.10C.12 D.24【答案】C【詳解】甲不站兩邊的有種方法,故選:C【典例2】(2023上·湖南邵陽·高三統(tǒng)考期中)某班派遣五位同學(xué)到甲,乙,丙三個(gè)街道進(jìn)行打掃活動(dòng),每個(gè)街道至少有一位同學(xué)去,至多有兩位同學(xué)去,且兩位同學(xué)去同一個(gè)街道,則不同的派遣方法有種.【答案】18【詳解】由題意得,學(xué)生的分配人數(shù)分別為2,2,1,由于兩位同學(xué)去同一個(gè)街道,故先從3個(gè)街道中選擇1個(gè)安排,有種,再將剩余3人分別兩組,和兩個(gè)街道進(jìn)行全排列,有故不同的派遣方法有種.故答案為:18【典例3】(2023·全國·高三專題練習(xí))某生產(chǎn)過程有4道工序,每道工序需要安排一人照看,現(xiàn)從甲、乙、丙等6名工人中安排4人分別照看一道工序,第一道工序只能從甲、乙兩工人中安排1人,第四道工序只能從甲、丙兩工人中安排1人,則不同的安排方案有種.【答案】36【詳解】由于甲、乙、丙比較特殊,因此可以將他們先安排,以他們照看第一、四道工序分類討論.①當(dāng)甲照看第一道工序、丙照看第四道工序時(shí),剩下4個(gè)人選擇2個(gè)照看中間兩道工序,于是有(種);②當(dāng)乙照看第一道工序、甲照看第四道工序時(shí),剩下4個(gè)人選擇2個(gè)照看中間兩道工序,于是有(種);③當(dāng)乙照看第一道工序、丙照看第四道工序時(shí),剩下4個(gè)人選擇2個(gè)照看中間兩道工序,于是有(種).綜上所述,不同的安排方案一共有(種).故答案為:36.【典例4】(2023上·陜西漢中·高二校聯(lián)考階段練習(xí))從等7人中選5人排成一排.(以下問題的結(jié)果均用數(shù)字作答)(1)若必須在內(nèi),有多少種排法?(2)若都在內(nèi),且必須相鄰,與都不相鄰,有多少種排法?【答案】(1)(2)【詳解】(1)解:根據(jù)題意,若必須在內(nèi),在其余6人中選出4人,再與全排列,共有種排法.(2)解:根據(jù)題意,先在其他4人中選出2人,有種選法,將看成一個(gè)整體,與選出2人全排列,有種選法,排好后,有2個(gè)空位可用,在其中選出1個(gè),安排,有種情況,所以,共有種不同的排法.【變式1】(2023上·江蘇·高三校聯(lián)考開學(xué)考試)甲、乙、丙等六人相約到電影院觀看電影《封神榜》,恰好買到了六張連號的電影票.若甲、乙兩人必須坐在丙的同一側(cè),則不同的坐法種數(shù)為(

)A.360 B.480 C.600 D.720【答案】B【詳解】由題意,甲、乙、丙等六人的全排列,共有種不同的排法,其中甲、乙、丙三人的全排列有種不同的排法,其中甲、乙在丙的同側(cè)有:甲乙丙、乙甲丙、丙甲乙,丙乙甲,共4種排法,所以甲、乙兩人必須坐在丙的同一側(cè),則不同的坐法種數(shù)為種.故選:B.【變式2】(2023上·上海浦東新·高三上海市洋涇中學(xué)??奸_學(xué)考試)電視臺連續(xù)播放6個(gè)廣告,其中包含4個(gè)不同的商業(yè)廣告和2個(gè)不同的公益廣告,要求首位必須播放公益廣告,則共有種不同的播放方式(結(jié)果用數(shù)值表示).【答案】240【詳解】因?yàn)槭孜槐仨毑シ殴鎻V告,所以共有種,故答案為:.【變式3】(2023上·高二單元測試)老師和學(xué)生共10人一起照相,其中1名老師、4名女生、5名男生,排成一行,要求男生、女生必須分性別站在一起,并且老師不站在兩端,那么不同站隊(duì)方式有種.【答案】【詳解】要求男生、女生必須分性別站在一起,可以考慮采用捆綁法,把男生和女生分別看成一個(gè)大元素進(jìn)行處理.男生站在一起看成一個(gè)大元素,女生站在一起看成一個(gè)大元素,老師不站在兩端,共有種排列.但4名女生、5名男生本身還有排列順序要求.所以共有種站隊(duì)方式.故答案為:【變式4】(2023上·高二課時(shí)練習(xí))從7名運(yùn)動(dòng)員中選4名組成接力隊(duì)參加4×100米接力賽.問:甲、乙兩人都不跑中間兩棒的排法有多少種?【答案】400【詳解】第一步中間位置除了甲乙還有5人,5個(gè)選2個(gè)全排列跑中間兩棒,有種;第二步確定首尾的人選,還剩下5個(gè)人,選2個(gè)全排列,有種.兩步相乘,共有種.題型06相鄰問題的排列問題【典例1】(2023上·黑龍江雞西·高三雞西市第一中學(xué)校??计谀?023年杭州亞運(yùn)會(huì)期間,甲?乙?丙3名運(yùn)動(dòng)員與4名志愿者站成一排拍照留念,若甲與乙相鄰?丙不排在兩端,則不同的排法種數(shù)有(

)A.720 B.960 C.1120 D.1440【答案】B【詳解】把甲乙捆綁成一個(gè)元素,則題設(shè)中的7個(gè)元素變?yōu)?個(gè)元素,先排除去丙的5個(gè)元素,共有種排法,再在中間的4個(gè)空隙中,插入丙,共有種插法,所以甲與乙相鄰?丙不排在兩端,則不同的排法種數(shù)有種.故選:B.【典例2】(2023·山西臨汾·??寄M預(yù)測)8名同學(xué)站成兩排參加文藝演出,要求兩排人數(shù)相等,A不站在前排,D不站在后排,E和F左右相鄰,則不同的排列方式共有(

)A.1152種 B.1728種 C.2304種 D.2880種【答案】C【詳解】由題意可知:D站在前排,A站在后排,若E和F站在前排,則不同的排列方式共有;若E和F站在后排,則不同的排列方式共有;所以不同的排列方式共有種.故選:C.【典例3】(2023·廣東韶關(guān)·統(tǒng)考一模)現(xiàn)有,,,,五人排成一列,其中與相鄰,不排在兩邊,則共有種不同的排法(用具體數(shù)字作答).【答案】24【詳解】法一:將捆綁,則除以外其他四人的排序有種,又不排在兩邊,所以可選的位置有兩種,所以共種排法;法二:將捆綁,若的位置任意,則五人的排序有種,其中排在兩邊的情況有種,所以不排在兩邊的情況有種;故答案為:.【變式1】(2023·廣西·模擬預(yù)測)一排有6個(gè)插座,只有三個(gè)通電,那么恰有兩個(gè)不通電的相鄰的情況有(

)A.10種 B.12種 C.72種 D.144種【答案】B【詳解】三個(gè)通電的放好,有四個(gè)空,兩個(gè)相鄰的不通電的捆綁在一起算一個(gè)元素,另一個(gè)不通電算一個(gè)元素,插入兩個(gè)空,有順序,所以種.故選:B【變式2】(2023·江蘇·統(tǒng)考三模)某人將斐波那契數(shù)列的前6項(xiàng)“1,1,2,3,5,8”進(jìn)行排列設(shè)置數(shù)字密碼,其中兩個(gè)“1”必須相鄰,則可以設(shè)置的不同數(shù)字密碼有(

)A.120種 B.240種 C.360種 D.480種【答案】A【詳解】將兩個(gè)1捆綁在一起,則可以設(shè)置的不同數(shù)字密碼有種.故選:A【變式3】(2023下·重慶南岸·高二??计谥校┟磕?月初,高三的同學(xué)們都要拍畢業(yè)照,留下高中生活的美好見證.某班同學(xué)集體合影后有4位同學(xué)邀請兩位老師合影留念.若6人站成一排,兩位老師站在中間位置,甲乙兩位同學(xué)站在一起,則不同的站位方法有種.(用數(shù)字作答)【答案】16【詳解】兩位老師站在中間位置,有種方法,甲乙兩位同學(xué)站在兩位老師的左側(cè)或右側(cè),另兩位同學(xué)在另一側(cè),有種方法,則不同的站位方法有種.故答案為:16.題型07不相鄰排列問題【典例1】(2023·貴州銅仁·校聯(lián)考模擬預(yù)測)2023年夏天貴州榕江的村超聯(lián)賽火爆全國,吸引了國內(nèi)眾多業(yè)余球隊(duì)參賽.現(xiàn)有六個(gè)參賽隊(duì)伍代表站成一排照相,如果貴陽折耳根隊(duì)與柳州螺螄粉隊(duì)必須相鄰,同時(shí)南昌拌粉隊(duì)與溫江烤肉隊(duì)不能相鄰,那么不同的站法共有(

)種.A.144 B.72 C.36 D.24【答案】A【詳解】先將不相鄰的兩隊(duì)排除,將貴陽折耳根隊(duì)與柳州螺螄粉隊(duì)看成一個(gè)整體,與余下兩隊(duì)先排,有種方法,再將不相鄰的兩隊(duì)插入他們的空隙中,有種方法,最后落實(shí)貴陽折耳根隊(duì)與柳州螺螄粉隊(duì)的具體排法有種方法,故不同的站法有種.故選:A.【典例2】(2023上·湖北·高三孝感高中校聯(lián)考開學(xué)考試)已知來自甲、乙、丙三個(gè)學(xué)校的5名學(xué)生參加演講比賽,其中三個(gè)學(xué)校的學(xué)生人數(shù)分別為1、2、2.現(xiàn)要求相同學(xué)校的學(xué)生的演講順序不相鄰,則不同的演講順序的種數(shù)為(

)A.40 B.36 C.56 D.48【答案】D【詳解】設(shè)這5個(gè)人分別為:ABCDE,則要求B與C和D與E的演講順序都不能相鄰.第一類:A在BC中間,此時(shí)再把D與E插空到這3人中間,此時(shí)的不同的演講順序有第二類:A不在BC中間,此時(shí)先考慮B與C和D與E,分別將他們看成兩個(gè)人的整體,再將他們的順序應(yīng)相間排列,最后考慮A,此時(shí)的不同的演講順序有綜上可得:總共有48種不同的演講順序,故選:D.【典例3】(多選)(2023下·高二單元測試)甲、乙、丙、丁四名同學(xué)和一名老師站成一排合影留念.要求老師必須站在正中間,且甲同學(xué)不與老師相鄰,則不同的站法種數(shù)為(

)A. B. C. D.【答案】BCD【詳解】(方法1:間接法):四名同學(xué)全排再去掉甲與老師相鄰的情況為.(方法2:直接法):特殊元素優(yōu)先安排,先讓老師站在正中間,甲同學(xué)從兩端中任選一個(gè)位置,有種站法,其余三名學(xué)生任意排列有種排法,則不同站法共有N=N1×N2=2×6=12(種).或者,四名同學(xué)全排時(shí),甲同學(xué)與老師相鄰與甲同學(xué)與老師不相鄰各占,故有.故選:BCD.【變式1】(多選)(2023下·黑龍江齊齊哈爾·高二齊齊哈爾市恒昌中學(xué)校??计谥校?人并排站成一行,如果甲、乙兩個(gè)人不相鄰,那么不同的排法種數(shù)可以是(

)A. B. C.84 D.【答案】AB【詳解】先除去甲、乙兩人,將剩下的3人全排,共種不同的排法,再將甲、乙兩人從產(chǎn)生的4個(gè)空中選2個(gè)插入共種不同的排法,所以5人并排站成一行,如果甲、乙兩個(gè)人不相鄰,不同的排法種數(shù)是;5人并排站成一行有種不同的排法,若甲、乙兩個(gè)人相鄰,利用捆綁法,有種不同的排法,所以5人并排站成一行,如果甲、乙兩個(gè)人不相鄰,那么不同的排法種數(shù)是.故選:AB.【變式2】(2023上·全國·高三專題練習(xí)),,,,五名學(xué)生按任意次序站成一排,其中和不相鄰,則不同的排法種數(shù)為(

)A.72 B.36 C.18 D.64【答案】A【詳解】解:先將其余三人全排列,共有種情況,再將和插空,共有種情況,所以共有種情況,故選:A.【變式3】(2023下·海南·高二校考期中)瓊中中學(xué)一條校道路邊有7盞路燈,為了節(jié)約用電,學(xué)校決定每天晩上點(diǎn)亮其中的3盞路燈,但要求點(diǎn)亮的3盞路燈都不相鄰,不同的點(diǎn)亮方式有(

)種A.5 B.10 C.15 D.20【答案】B【詳解】因?yàn)椴稽c(diǎn)亮的4盞燈形成5個(gè)空,將點(diǎn)亮的3盞燈插到這5個(gè)空中即可,所以不同的點(diǎn)亮方式有種.故選:B.【變式4】(2023·云南曲靖·??既#├蠋熍啪毠?jié)目需要4個(gè)男生和2個(gè)女生,將這六名學(xué)生隨機(jī)排成一排,2個(gè)女生不相鄰的排法為.【答案】【詳解】若2個(gè)女生不相鄰,先排4個(gè)男生有種排法,4個(gè)男生產(chǎn)生5個(gè)空,將2個(gè)女生插人5個(gè)空中有種排法,故有種排法,故答案為:題型08相鄰(不相鄰)排列綜合問題【典例1】(2023下·重慶榮昌·高二重慶市榮昌中學(xué)校??计谥校╇娪啊堕L津湖》講述了在極寒嚴(yán)酷環(huán)境下,中國人民志愿軍憑著鋼鐵意志和英勇無畏的精神為長津湖戰(zhàn)役勝利做出重要貢獻(xiàn)的故事,現(xiàn)有4名男生和3名女生相約一起去觀看該影片,他們的座位在同一排且連在一起.(列出算式,并計(jì)算出結(jié)果)(1)女生必須坐在一起的坐法有多少種?(2)女生互不相鄰的坐法有多少種?(3)甲、乙兩位同學(xué)相鄰且都不與丙同學(xué)相鄰的坐法有多少種?【答案】(1)720種(2)1440種(3)960種.【詳解】(1)根據(jù)題意,先將3個(gè)女生排在一起,有種排法,將排好的女生視為一個(gè)整體,與4個(gè)男生進(jìn)行排列,共有種排法,由分步乘法計(jì)數(shù)原理,共有種排法;(2)根據(jù)題意,先將4個(gè)男生排好,有種排法,再在這4個(gè)男生之間及兩頭的5個(gè)空位中插入3個(gè)女生有種方法,故符合條件的排法共有種;(3)根據(jù)題意,先排甲、乙、丙以外的其他4人,有種排法,由于甲、乙相鄰,故再把甲、乙排好,有種排法,最后把排好的甲、乙這個(gè)整體與丙分別插入原先排好的4人的5個(gè)空擋中有種排法,故符合條件的排法共有種.【典例2】(2023下·山西晉中·高二校考期中)有甲、乙、丙、丁、戊5位同學(xué),求:(1)5位同學(xué)站成一排,甲、戊不在兩端有多少種不同的排法?(2)5位同學(xué)站成一排,要求甲乙必須相鄰,丙丁不能相鄰,有多少種不同的排法?【答案】(1)36;(2)24;【詳解】(1)首先排兩端,從甲、戊以外的3人中選出2人站兩端,有種排法;中間3個(gè)位置全排列,有種排法,所以共有種排法.(2)首先將甲乙兩人捆綁,與戊一起排,有種排法,此時(shí),共有3個(gè)空,丙丁兩人插空排列,共有種排法,所以共有種排法.【典例3】(2023下·江蘇徐州·高二統(tǒng)考期中)有六位同學(xué)A,B,C,D,E,F(xiàn)站成一排照相,如果:(1)A,B兩人不排在一起,有幾種排法?(2)C,D兩人必須排在一起,有幾種排法?(3)E不在排頭,F(xiàn)不在排尾,有幾種排法?【答案】(1)種(2)種(3)種【詳解】(1)先排除A,B外的四個(gè)人,再將A,B插入到其余4人所形成的5個(gè)空中,因此,排法種數(shù)為;(2)將C,D兩人捆綁在一起看作一個(gè)復(fù)合元素和其他4人去安排,因此,排法種數(shù)為;(3)E不在排頭,F(xiàn)不在排尾,分以下兩種情況討論:①若E在排尾,則剩下的5人全排列,故有種排法;②若E不在排尾,則E有4個(gè)位置可選,B有4個(gè)位置可選,將剩下的4人全排列,安排在其它4個(gè)位置即可,此時(shí),共有種排法.綜上所述,共有種不同的排法種數(shù).【變式1】(2023上·高二課時(shí)練習(xí))4名男生、3名女生站成一排,分別求滿足下列條件的站法種數(shù).(1)男生和女生均相鄰;(2)男生均相鄰;(3)女生均不相鄰;(4)男生與男生、女生與女生均不相鄰;(5)至少有兩個(gè)女生相鄰.【答案】(1)288(2)576(3)1440(4)144(5)3600【詳解】(1)因?yàn)槟猩团噜彛瑢⒛猩团謩e看成一個(gè)整體,再進(jìn)行全排,所以共有站法種數(shù)為種;(2)因?yàn)槟猩噜?,將男生看成一個(gè)整體,再和其余女生進(jìn)行全排,所以共有站法種數(shù)為種;(3)因?yàn)榕幌噜彛葘⒛猩我馀帕?,再將女生插空,所以共有站法種數(shù)為種;(4)因?yàn)槟猩c男生、女生與女生均不相鄰,將男女生相間排列,所以共有站法種數(shù)為種;(5)當(dāng)3個(gè)女生全相鄰,共有站法種數(shù)為種,恰有2個(gè)女生相鄰,共有站法種數(shù)為種,所以至少有兩個(gè)女生相鄰,共有站法種數(shù)為種.【變式2】(2023下·北京東城·高二景山學(xué)校??计谥校┟猩兔ò?、乙)站成一排表演節(jié)目.(1)若這名女生不能相鄰,有多少種不同的排法?(2)甲乙必須相鄰,有多少種不同的排法?(3)若甲不能站在左端,乙不能站在右端,有多少種不同的排法?【答案】(1)2880(2)10080(3)30960【詳解】(1)要使這名女生不相鄰,可以先排名男生,再將名女生插入名男生產(chǎn)生的個(gè)空中,所以這名女生不相鄰的排法有種.(2)利用捆綁法,把甲和乙捆在一起,看作一個(gè)人,則不同的排法有種;(3)甲站在右端,其余人全排列,有種排法.甲不站在右端有種排法,乙有種排法,其余人全排,有種排法.故一共有種排法.【變式3】(2023下·江蘇淮安·高二校聯(lián)考期中)有4名男生,3名女生,共7個(gè)人從左至右站成一排,在下列情況下,各有多少種不同的站法.(1)男生?女生各站在一起;(2)男生必須站在一起;(3)男生互不相鄰,且女生也互不相鄰.(4)最左端只能站某生甲或乙,最右端不能站某生甲,則有多少種不同的站法?【答案】(1)288(2)576(3)144(4)1320【詳解】(1)男生必須站在一起,即把4名男生全排列,有種排法,女生必須站在一起,即把3名女生全排列,有種排法,全體男生、女生各看作一個(gè)元素全排列有種排法,由分步乘法計(jì)數(shù)原理知共有(種)排法.(2)把所有男生看作一個(gè)元素,與3名女生組成4個(gè)元素全排列,故有(種)不同的排法.(3)先排男生有種排法,然后讓女生插空,有種排法,所以共有(種)不同的排法.(4)若最左端站某生甲,余下6名同學(xué)全排列共有種排法;若最左端站某生乙,則應(yīng)先排某生甲,有種排法,剩余5名同學(xué)全排列共有種排法,由分步計(jì)數(shù)原理知共有種排法.根據(jù)分類加法計(jì)數(shù)原理可得,共有種.題型09數(shù)字排列問題【典例1】(2023下·上海普陀·高二??计谀┯脭?shù)字、、、、組成沒有重復(fù)數(shù)字的五位數(shù),其中能被整除的數(shù)共有個(gè).(用數(shù)字作答)【答案】【詳解】由題意可知,個(gè)位數(shù)只能排或,其他數(shù)位沒有限制,因此,能被整除的五位數(shù)的個(gè)數(shù)為個(gè).故答案為:.【典例2】(2023上·高二課時(shí)練習(xí))用可以組成多少個(gè)無重復(fù)數(shù)字的五位數(shù)?其中能被5整除的五位數(shù)有多少個(gè)?【答案】可以組成個(gè)無重復(fù)數(shù)字的五位數(shù);能被5整除的五位數(shù)有個(gè).【詳解】用可以組成個(gè)無重復(fù)數(shù)字的五位數(shù).若五位數(shù)的個(gè)位為,這樣的五位數(shù)有個(gè).若五位數(shù)的個(gè)位為,這樣的五位數(shù)有個(gè).所以其中能被5整除的五位數(shù)有個(gè).【典例3】(2023下·廣東肇慶·高二統(tǒng)考期末)用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù).(1)這個(gè)五位數(shù)為奇數(shù),則不同的五位數(shù)有多少個(gè)?(結(jié)果用數(shù)值表示)(2)要求3和4相鄰,則不同的五位數(shù)有多少個(gè)?(結(jié)果用數(shù)值表示)【答案】(1)72(2)48【詳解】(1)從1,3,5中選一個(gè)填入個(gè)位,有種,剩余四個(gè)位置全排列,有種,故共有個(gè).(2)3和4相鄰,可以在第1,2位或第2,3位或第3,4位或第4,5位這4個(gè)位置中選1個(gè),然后3和4內(nèi)部全排列,有種,其他位置進(jìn)行全排列,有種,故共有個(gè).【變式1】(2023上·高二課時(shí)練習(xí))用1,2,3,4,5,6,7這七個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù),其中偶數(shù)共有多少個(gè)?【答案】360【詳解】偶數(shù)的個(gè)位數(shù)只能是2、4、6,有種排法,其他位上有種排法,由分步乘法計(jì)數(shù)原理,知共有四位偶數(shù)(個(gè)).【變式2】(2023上·高二課時(shí)練習(xí))由數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中小于50000的偶數(shù)共有多少個(gè)?【答案】36【詳解】要組成一個(gè)沒有重復(fù)數(shù)字的五位數(shù),可以分成以下步驟來完成:第一步,排個(gè)位數(shù),因?yàn)橐笫桥紨?shù),所以只能排2或4,排法有種;第二步,排萬位數(shù),小于50000的五位數(shù),萬位數(shù)只能是1,3或排個(gè)位數(shù)時(shí)余下的2,4中的一個(gè),排法有種;在首末兩位數(shù)排定后,第三步排中間3個(gè)數(shù)字時(shí),排法有種.根據(jù)分步乘法計(jì)數(shù)原理,所求偶數(shù)共有(個(gè)).題型10排列的綜合應(yīng)用【典例1】(2023·全國·模擬預(yù)測)某中學(xué)進(jìn)行數(shù)學(xué)競賽選拔考試,,,,,共5名同學(xué)參加比賽,決出第1名到第5名的名次.和去向教練詢問比賽結(jié)果,教練對說:“你和都沒有得到冠軍.”對說:“你不是最后一名.”從這兩個(gè)回答分析,5人的名次排列方式共有(

)A.54種 B.72種 C.96種 D.120種【答案】A【詳解】根據(jù)題意可知和都沒有得到冠軍,且不是最后一名,分兩種情況:①是最后一名,則可以為第二、三、四名,即有3種情況,剩下的三人安排在其他三個(gè)名次,有種情況,此時(shí)有種名次排列情況;②不是最后一名,,需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個(gè)名次,有種情況,此時(shí)有種名次排列情況,則5人的名次排列方式共有種.故選A.【典例2】(2023上·上?!じ叨?茧A段練習(xí))分別求下列情形的方法數(shù):(用數(shù)字作答)(1)從4名男生4名女生中選出2男2女組成一個(gè)隊(duì)伍;(2)8個(gè)人排成一排,其中甲乙二人必須站在一起;(3)8個(gè)人排成一排,甲乙丙三人互相不能相鄰.【答案】(1)(2)(3)【詳解】(1)先從先從名男生中選出名,有種方法,再從名女生中選出名,有種方法,所以共有種方法.(2)先把甲乙捆綁看成一個(gè)整體有種方法,再和其他人一起排列有種方法,所以8個(gè)人排成一排,其中甲乙二人必須站在一起的方法為.(3)先把其他人排列共有種方法,再把甲乙丙三人插空有,所以個(gè)人排成一排,甲乙丙三人互相不能相鄰的方法為.【典例3】(2023上·高二課時(shí)練習(xí))3名男生?4名女生排成一行.在下列要求下,分別求不同排列方法的種數(shù):(1)甲不在最左邊,乙不在最右邊;(2)男生必須排在一起;(3)男生和女生相間排列;(4)在甲?乙兩人中間必須有3人.【答案】(1)(2)(3)(4)【詳解】(1)依題意,先排最左邊,除去甲外,有種,余下的6個(gè)位置全排有種,但應(yīng)剔除其中乙在最右邊的排法數(shù)種,則符合條件的排法共有種.(2)將男生看成一個(gè)整體,進(jìn)行全排列,有種排法,再與其他元素進(jìn)行全排列,有種排法,故共有種.(3)先排好男生,然后將女生插入男生所形成的四個(gè)空位,共有種.(4)從除甲、乙以外的5人中選3人排在甲、乙中間的排法有種,將甲、乙看作一個(gè)整體,和其余2人排成一排的排法有種,最后再把選出的3人的排列插入到甲、乙之間即可,共有種.【變式1】(2023·四川涼山·統(tǒng)考一模)五名同學(xué)彝族新年期間去邛海濕地公園采風(fēng)觀景,在觀鳥島濕地門口五名同學(xué)排成一排照相留念,若甲與乙相鄰,丙與丁不相鄰,則不同的排法共有(

)A.12種 B.24種 C.48種 D.96種【答案】B【詳解】甲和乙相鄰,捆綁在一起有種,再與丙和丁外的1人排列有種,再排丙和丁有種,故共有種排法.故選:B.【變式2】(2023上·遼寧朝陽·高二建平縣實(shí)驗(yàn)中學(xué)??计谀?,1,2,3,4這五個(gè)數(shù)字組成無重復(fù)數(shù)字的五位數(shù),則:(1)可以組成多少個(gè)偶數(shù)?(2)可以組成多少個(gè)比13123大的數(shù)?【答案】(1)60;(2)82.【詳解】(1)當(dāng)個(gè)位數(shù)字為0時(shí),可以組成個(gè)偶數(shù);當(dāng)個(gè)位數(shù)字不為0時(shí),可以組成個(gè)偶數(shù);所以可以組成個(gè)偶數(shù).(2)所組成的比13123大的五位數(shù),可以分為以下2類:第一類:形如,共有個(gè),第二類:形如,共有個(gè),所以可以組成個(gè)比13123大的數(shù).【變式3】(2023上·高二課時(shí)練習(xí))(1)配制某種染色劑,需要加入種有機(jī)染料、種無機(jī)染料和種添加劑,其中有機(jī)染料的添加順序不可以相鄰.為研究所有不同的添加順序?qū)θ旧Ч挠绊?,總共要試?yàn)多少次?(2)某展覽館計(jì)劃展出幅不同的畫,其中水彩畫幅、油畫幅、國畫幅.現(xiàn)排成一排陳列,要求同一品種的畫必須連在一起,并且水彩畫不放在兩端.問:有多少種不同的陳列方式?【答案】(1);(2).【詳解】解:(1)先將種無機(jī)染料和種添加劑進(jìn)行排序,然后將種有機(jī)染料插入種無機(jī)染料和種添加劑所形成的個(gè)空位中的個(gè),由分步乘法計(jì)數(shù)原理可知,試驗(yàn)次數(shù)為;(2)將幅油畫捆綁,將幅國畫捆綁,形成兩個(gè)大元素,將水彩畫放在“中間”,將油畫、國畫放在兩端,故不同的陳列方式種數(shù)為種.A夯實(shí)基礎(chǔ)B能力提升A夯實(shí)基礎(chǔ)一、單選題1.(2023下·北京通州·高二統(tǒng)考期中)計(jì)算:(

)A.30 B.60 C.90 D.120【答案】D【分析】根據(jù)排列數(shù)公式計(jì)算可得結(jié)果.【詳解】.故選:D2.(2023下·內(nèi)蒙古烏蘭察布·高二??茧A段練習(xí))等于()A.107 B.323C.320 D.348【答案】D【分析】根據(jù)排列數(shù)計(jì)算即可;【詳解】.故選:D.3.(2023下·廣東江門·高二??计谥校┯脭?shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為(

)A.120 B.86 C.72 D.60【答案】D【分析】根據(jù)排列數(shù)計(jì)算出正確答案.【詳解】依題意,組成的無重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為.故選:D4.(2023·四川樂山·統(tǒng)考一模)“數(shù)獨(dú)九宮格”原創(chuàng)者是18世紀(jì)的瑞士數(shù)學(xué)家歐拉,它的游戲規(guī)則很簡單,將1到9這九個(gè)自然數(shù)填到如圖所示的小九宮格的9個(gè)空格里,每個(gè)空格填一個(gè)數(shù),且9個(gè)空格的數(shù)字各不相同,若中間空格已填數(shù)字4,且只填第二行和第二列,并要求第二行從左至右及第二列從上至下所填的數(shù)字都是從大到小排列的,則不同的填法種數(shù)為(

)4A.70 B.120 C.140 D.144【答案】B【分析】根據(jù)排列的知識求得正確答案.【詳解】比小的有,共個(gè),從中選出個(gè)排在的左邊和上方,方法數(shù)有種,比大的有,共個(gè),從中選出個(gè)排在的右邊和下方,方法數(shù)有種,所以不同的填法種數(shù)為種.故選:B5.(2023·全國·模擬預(yù)測)甲、乙,丙、丁,戊5名同學(xué)進(jìn)行勞動(dòng)技術(shù)比賽,決出第1名到第5名的名次.甲和乙去詢問成績,裁判說:“很遺憾,你倆都沒有得到冠軍.但都不是最差的.”從回答分析,5人的名次排列的不同情況可能有(

)A.27種 B.72種 C.36種 D.54種【答案】C【分析】根據(jù)題意,先排甲乙,再排剩下三人,由排列數(shù)的計(jì)算,即可得到結(jié)果.【詳解】根據(jù)題意,甲、乙都沒有得到冠軍,也都不是最后一名,先排甲乙,再排剩下三人,則5人的名次排列種數(shù)為種.故選:C6.(2023·河南開封·統(tǒng)考一模)現(xiàn)要從6名學(xué)生中選4名代表班級參加學(xué)校的接力賽,已知甲確定參加比賽且跑第1棒或第4棒,乙不能跑第1棒,則合適的選擇方法種數(shù)為(

)A.84 B.108 C.132 D.144【答案】B【分析】特殊位置優(yōu)先排,分類求解可得.【詳解】當(dāng)甲跑第1棒時(shí),則有種選擇方法;當(dāng)甲跑第4棒時(shí),乙參加比賽則有種選擇方法,乙不參加比賽則有種選擇方法.故合適的選擇方法種數(shù)為種.故選:B7.(2023上·甘肅白銀·高三甘肅省靖遠(yuǎn)縣第一中學(xué)校聯(lián)考階段練習(xí))甲?乙?丙?丁等7人站成一排,其中甲?乙相鄰,丁與甲?乙?丙都不相鄰的站法共有(

)A.576種 B.448種 C.288種 D.224種【答案】A【分析】分兩種情況討論,第一種情況為丙和甲?乙中的1人相鄰,優(yōu)先排列甲?乙?丙位置,再將三人捆綁,將除丁外三人先排列,再將捆綁的整體和丁用插空法排列即可;第二種情況為若丙和甲?乙不相鄰,先優(yōu)先排列甲?乙位置后捆綁,再將除甲?乙?丙、丁外的三人先排列,最后用插空法將捆綁整體和丙、丁插空排列即可.【詳解】若丙和甲?乙中的1人相鄰,則滿足條件的站法共有種,若丙和甲?乙不相鄰,則滿足條件的站法共有種,故總的站法共有576種.故選:A8.(2023下·廣西防城港·高二防城港市高級中學(xué)校考期中)用數(shù)字0、1、2、3、4、5組成沒有重復(fù)數(shù)字的四位數(shù),若將組成的不重復(fù)的四位數(shù)按從小到大的順序排成一個(gè)數(shù)列則第85個(gè)數(shù)字為(

)A.2301 B.2304 C.2305 D.2310【答案】A【分析】依次計(jì)算首位為1、前兩位為20、前兩位為21的有多少個(gè)數(shù),然后可得答案.【詳解】首位為1的有個(gè),前兩位為20的有個(gè),前兩位為21的有個(gè),所以第85個(gè)數(shù)字是前兩位為23的最小數(shù),即為2301.故選:A二、多選題9.(2023上·高二課時(shí)練習(xí))(多選)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的不同的所有四位數(shù).下列結(jié)論正確的是(

)A. B.C. D.-【答案】CD【分析】可用直接法先排第一位數(shù)字,再排后三位;也可用間接法先進(jìn)行全排列,再排除首位是的情況.【詳解】(直接法)先排第一位,有種方法,再排后三位有種方法,所以共有種排法;(間接法)先進(jìn)行全排列共有種排法,首位是的排法為,所以共有-排法,故選:10.(2023下·江西·高一江西師大附中校考階段練習(xí))A、B、C、D、E五個(gè)人并排站在一起,則下列說法正確的有(

)A.若A、B兩人站在一起有48種方法B.若A、B不相鄰共有12種方法C.若A在B左邊有60種排法D.若A不站在最左邊,B不站最右邊,有72種方法【答案】AC【分析】對于A:利用捆綁法,結(jié)合排列數(shù)運(yùn)算求解;對于B:利用間接法,在總體中排除A、B兩人站在一起的情況;對于C:根據(jù)對稱性分析求解;對于D:利用間接法,結(jié)合組合數(shù)運(yùn)算求解.【詳解】對于選項(xiàng)A:若A、B兩人站在一起,則有種方法,故A正確;對于選項(xiàng)B:A、B、C、D、E五個(gè)人并排站在一起,則有種方法,所以A、B不相鄰共有種方法,故B錯(cuò)誤;對于選項(xiàng)C:根據(jù)對稱可知A在B左邊有種排法,故C正確;對于選項(xiàng)D:A站在最左邊,則有種方法,B站最右邊,則有種方法,A站在最左邊,B站最右邊,則有種方法,所以A不站在最左邊,B不站最右邊,有種方法,故D錯(cuò)誤.故選:AC三、填空題11.(2023上·上海長寧·高三上海市延安中學(xué)??计谥校募?乙等5人中任選3人參加三個(gè)不同項(xiàng)目的比賽,要求每個(gè)項(xiàng)目都有人參加,則甲?乙中至少有1人入選的不同參賽方案共有種.【答案】54【分析】根據(jù)排列數(shù)利用間接法,在總體中排除沒有甲、乙的參賽方案.【詳解】若甲?乙等5人中任選3人參加三個(gè)不同項(xiàng)目的比賽,共有種不同參賽方案,若沒有甲?乙入選的不同參賽方案共有種,所以甲?乙中至少有1人入選的不同參賽方案共有種.故答案為:54.12.(2023上·廣東東莞·高三??茧A段練習(xí))某中學(xué)為慶祝建校130周年,高二年級派出甲?乙?丙?丁?戊5名老師參加“130周年辦學(xué)成果展”活動(dòng),活動(dòng)結(jié)束后5名老師排成一排合影留念,要求甲、乙兩人不相鄰且丙、丁兩人必須相鄰,則排法共有種(用數(shù)字作答).【答案】24【分析】應(yīng)用捆綁、插空法,結(jié)合分步計(jì)數(shù)及排列數(shù)求不同的排法數(shù).【詳解】將丙、丁捆綁排列有種,再把

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論