版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第三角形全等的判定3教案6篇一份詳細的教案能夠幫助教師總結經驗,提升自己的專業(yè)素養(yǎng)和教學能力,教案的精細化設計能夠幫助教師更好地把握課堂節(jié)奏,避免拖延,XX小編今天就為您帶來了三角形全等的判定3教案6篇,相信一定會對你有所幫助。
三角形全等的判定3教案篇1
教學目標:
1、知識目標:
(1)熟記邊角邊公理的內容;
(2)能應用邊角邊公理證明兩個三角形全等。
2、能力目標:
(1)通過“邊角邊”公理的運用,提高學生的邏輯思維能力;
(2)通過觀察幾何圖形,培養(yǎng)學生的識圖能力。
3、情感目標:
(1)通過幾何證明的教學,使學生養(yǎng)成尊重客觀事實和形成質疑的習慣;
(2)通過自主學習的發(fā)展體驗獲取數學知識的感受,培養(yǎng)學生勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧。
教學重點:學會運用公理證明兩個三角形全等。
教學難點:在較復雜的圖形中,找出證明兩個三角形全等的條件。
教學用具:直尺、微機
教學方法:自學輔導式
教學過程:
1、公理的發(fā)現(xiàn)
(1)畫圖:(投影顯示)
教師點撥,學生邊學邊畫圖。
(2)實驗
讓學生把所畫的剪下,放在原三角形上,發(fā)現(xiàn)什么情況?(兩個三角形重合)
這里一定要讓學生動手操作。
(3)公理
啟發(fā)學生發(fā)現(xiàn)、總結邊角邊公理:有兩邊和它們的夾角對應相等的兩個三角形全等(簡寫成“邊角邊”或“sas”)
作用:是證明兩個三角形全等的依據之一。
應用格式:
強調:
1、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。
2、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊,公共角、對頂角、鄰補角、外角、平角等)所以找條件歸結成兩句話:已知中找,圖形中看。
3、平面幾何中常要證明角相等和線段相等,其證明常用方法:
證角相等――對頂角相等;同角(或等角)的余角(或補角)相等;兩直線平行,同位角相等,內錯角相等;角平分線定義;等式性質;全等三角形的對應角相等地。
證線段相等的方法――中點定義;全等三角形的對應邊相等;等式性質。
2、公理的應用
(1)講解例1。學生分析完成,教師注重完成后的總結。
分析:(設問程序)
“sas”的三個條件是什么?
已知條件給出了幾個?
由圖形可以得到幾個條件?
解:(略)
(2)講解例2
投影例2:
例2如圖2,ae=cf,ad∥bc,ad=cb,
求證:
學生思考、分析,適當點撥,找學生代表口述證明思路
讓學生在練習本上定出證明,一名學生板書。教師強調
證明格式:用大括號寫出公理的三個條件,最后寫出
結論。(3)講解例3(投影)
證明:(略)
學生分析思路,寫出證明過程。
(投影展示學生的作業(yè),教師點評)
(4)講解例4(投影)
證明:(略)
學生口述過程。投影展示證明過程。
教師強調證明線段相等的幾種常見方法。
(5)講解例5(投影)
證明:(略)
學生思考、分析、討論,教師巡視,適當參與討論。
師生共同討論后,讓學生口述證明思路。
教師強調解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。
3、課堂小結:
(1)判定三角形全等的方法:sas
(2)公理應用的書寫格式
(3)證明線段、角相等常見的方法有哪些?
讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構。
6、布置作業(yè)
a書面作業(yè)p56#6、7
b上交作業(yè)p57b組1
思考題:
板書設計:
探究活動
三角形全等的判定3教案篇2
教學建議
直角三角形全等的判定
知識結構
重點與難點分析:
本節(jié)課教學方法主要是“自學輔導與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發(fā)現(xiàn)規(guī)律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:
(1)由“先教后學”轉向“先學后教
本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。
(2)在層次教學中培養(yǎng)學生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。
綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。
教法建議:
由“先教后學”轉向“先學后教”
本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。
(2)在層次教學中培養(yǎng)學生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
公理的多層次理解包括:明確公理的條件及結論;公理的`文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。
綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。
教學目標:
1、知識目標:
(1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;
(2)掌握斜邊、直角邊公理;
(3)能夠運用hl公理及其他三角形全等的判定方法進行證明和計算.
2、能力目標:
(1)通過尺規(guī)作圖使學生得到技能的訓練;
(2)通過公理的初步應用,初步培養(yǎng)學生的邏輯推理能力.
3、情感目標:
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過知識的縱橫遷移感受數學的系統(tǒng)特征。
教學重點:sss公理、靈活地應用學過的各種判定方法判定三角形全等。
教學難點:靈活應用五種方法(sas、asa、aas、sss、hl)來判定直角三角形全等。
教學用具:直尺,微機
教學方法:自學輔導
教學過程:
1、新課引入
投影顯示
問題:判定三角形全等的方法有四種,若這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?
這個問題讓學生思考分析討論后回答,教師補充完善。
2、公理的獲得
讓學生概括出hl公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)
公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等。
應用格式:(略)
強調說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。
(2)、判定兩個直角三角形全等的方法。
(3)特殊三角形研究思想。
3、公理的應用
(1)講解例1(投影例1)
例1求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。
學生思考、分析、討論,教師巡視,適當參與討論。找學生代表口述證明思路。
分析:首先要分清題設和結論,然后按要求畫出圖形,根據題意寫出、已知求證后,再寫出證明過程。
證明:(略)
(2)講解例2。學生分析完成,教師注重完成后的點評。)
例2:如圖2,△abc中,ad是它的角平分線,且bd=cd,de、df分別垂直于ab、ac,垂足為e、f.
求證:be=cf
分析:be和cf分別在△bde和△cdf中,由條件不能直接證其全等,但可先證明△aed≌△afd,由此得到de=df
證明:(略)
(3)講解例3(投影例3)
例3:如圖3,已知△abc中,∠bac=,ab=ac,ae是過a的一條直線,且b、c在ae的異側,bd⊥ae于d,ce⊥ae于e,求證:
(1)bd=de+ce
(2)若直線ae繞a點旋轉到圖4位置時(bd<ce),其余條件不變,問bd與de、ce的關系如何,請證明;
(3)若直線ae繞a點旋轉到圖5時(bd>ce),其余條件不變,bd與de、ce的關系怎樣?請直接寫出結果,不須證明
學生口述證明思路,教師強調說明:閱讀問題的思考方法及思想。
4、課堂小結:
(1)判定直角三角形全等的方法:5個(sas、asa、aas、sss、hl)在這些方法的條件中都至少包含一條邊。
(2)直角三角形判定方法的綜合運用
讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構。
5、布置作業(yè):
a、書面作業(yè)p79#7、9
b、上交作業(yè)p80#5、6
板書設計:
探究活動
直角形全等的判定
如圖(1)a、e、f、c在一條直線上,ae=cf,過e、f分別作de⊥ac,bf⊥ac,
若ab=cd求證:bd平分ef。若將△dec的邊ec沿ac方向移動變?yōu)槿鐖D(2)時,其余條件不變,上述結論是否成立,請說明理由。
三角形全等的判定3教案篇3
教學目標〗
◆1、探索兩個直角三角形全等的條件.
◆2、掌握兩個直角三角形全等的條件(hl).
◆3、了解角平分線的性質:角的內部,到角兩邊距離相等的點,在角平分線上,及其簡單應用.
教學重點與難點〗
◆教學重點:直角三角形全等的`判定的方法“hl”.
◆教學難點:直角三角形判定方法的說理過程.
教學過程〗
一、創(chuàng)設情境,引入新課:
教師演示一等腰三角形,沿底邊上高裁剪,讓同學們觀察兩個三角形是否全等?
二、合作學習:
(1)回顧:判定兩個直角三角形全等已經有哪些方法?
(2)有斜邊和一條直角邊對應相等的兩個三角形全等嗎?如何會全等,教師可啟發(fā)引導學生一起利用畫圖,疊合方法探索說明兩個直角三角形全等的判定方法,可充分讓學生想象。不限定方法。
教師歸納出方法后,要學生注意兩點:“hl”是僅適用于rt△的特殊方法。(3)教師引導、學生練習p47
三、應用新知,鞏固概念
例題講評
例:已知:p是∠aob內一點,pd⊥oa,pe⊥ob,d,e分別是垂足,且pd=pe,則點p在∠aob的平分線上,請說明理由。
分析:引導猜想可能存在的rt△;構造兩個全等的rt△;要說明p在∠aob的平分線上,只要說明∠dop=∠eop
小結:角平分線的又一個性質:(判定一個點是否在一個角的平分線上的方法)
角的內部,到角的兩邊距離相等的點,在這個角的平分線上。
四、學生練習,鞏固提高
練一練:p481.2.p493
五、小結回顧,反思提高
(1)本節(jié)內容學的是什么?你認為學習本節(jié)內容應注意些什么?
(2)學習本節(jié)內容你有哪些體會?
(3)你認為有沒有其他的方法可以證明直角三角形全等(勾股定理)
(4)你現(xiàn)在知道的有關角平分線的知識有哪些?
六、布置作業(yè)
三角形全等的判定3教案篇4
課程內容
邊邊邊判定定理
選用教材
人教版數學八年級上冊
授課人
崔志偉
授課章節(jié)
第十二章第二節(jié)
學時
1
教學重點
掌握全等三角形的判定定理邊邊邊,能運用該定理解決實際問題。
教學難點
探索三角形全等的條件,以及運用邊邊邊定理畫一角等于已知角
教學方法
學生合作探究法、教師講解結合談話法等綜合教學方法
教學手段
黑板板書教學
課堂教學設計
階段
教學內容
導入部分
采用復習導入,教師首先提問學生回顧全等三角形的定義,以及全等三角形的性質。
學生在復習以上知識的條件下教師做出解釋,上節(jié)課我們已經學習了三角形在滿足三邊對應相等,三角對應相等,則兩三角形全等,那么在實際的運用過程中,需要這么多條件運用會很不方便,那么我們很容易想到,能不能簡化條件,得出三角形全等呢?由此引出課題全等三角形的判定。
階段
課堂教學設計
課程新授
教師讓學生大膽想象,可以從一組對應關系相等開始探究,逐步上升到兩組對應關系相等三組對應關系相等。
但是為了節(jié)約時間,可以讓學生從兩組開始,如若兩組都不行,那一組肯定也不行,反之如若兩組條件就足夠了,再回頭看看一組的情況。
接下來學生在教師的提問下思考二組對應條件的所有可能的情況,預設會有思考不全面的同學,教師即使揭示在一組邊與一組角相等的情況下,邊與角的關系可以為相鄰,也有可能為相對。
學生在教師的提示下,探索發(fā)現(xiàn)滿足兩組對應關系相等的三角形不一定全等,由此可以斷定一組對應關系相等也不能作為判定三角形全等的條件。接下來直接考慮三組對應相等關系的情況。
首先引導學生對三組對應關系相等進行分類。
預設學生部分可以全部考慮到,部分學生考慮不周到,這時教師可以請會的同學展示被同學忽略的情況即兩組角與一組對邊對應相等時,邊可以為對邊,也可以為鄰邊。
本節(jié)課將引導學生探索三邊相等的情形,有了前面兩組對應相等的經驗,預設學生根據尺規(guī)作圖可以畫出三邊等于已知三角形的三角形,接下來通過三角形全等的定義,讓學生動手操作進行驗證,發(fā)現(xiàn)可以完全重合,由此我們得到三組邊對應相等的三角形全等。即sss,教師解釋s為英文邊,side的`首字母。
接下來請同學說出已知三角形與所作三角形之間存在的對應相等關系,預設學生可以很輕易說出。
由此教師揭示,實際上我們還學回了一個做角等于一只角的另外一種做法,即運用尺規(guī)作圖畫一角等于已知角。接下來,教師稍作解釋,請學生探究討論作圖步驟??凑l的最簡便。
學生探索過后,教師請學生回答自己的作圖步驟,最后由教師板書最簡易的作圖步驟。
之后我將用練習的方式,加深同學對邊邊邊判定定理的理解并加強應用能力。
作業(yè)
作業(yè)為書上的練習第二題,以及課后作業(yè)的第四題對應基礎性練習即鞏固性練習。
板書設計
采用歸納式的板書設計,主要板書兩種即三種對應關系相等的種類,邊邊邊判定定理的內容以及畫一角等于已知角的步驟以及重要練習的過程。
小結
本結課內容比較多,主要體現(xiàn)在全等三角形判定的探索過程,為了節(jié)約時間,我選擇讓學生直接從兩個條件開始探究,同時也不影響學生理解,教師主要以引導為主,學生自主探索學習。
三角形全等的判定3教案篇5
【教學目標】
1.使學生理解邊邊邊公理的內容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;
2.繼續(xù)培養(yǎng)學生畫圖、實驗,發(fā)現(xiàn)新知識的能力.
【重點難點】
1.難點:讓學生掌握邊邊邊公理的內容和運用公理的自覺性;
2.重點:靈活運用sss判定兩個三角形是否全等.
【教學過程】
一、創(chuàng)設問題情境,引入新課
請問同學,老師在黑板上畫得兩個三角形,△abc與△全等嗎你是如何判定的.
(同學們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀察是否有三條邊對應相等,三個角對應相等.)
上一節(jié)課我們已經探討了兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全
等.滿足三個條件時,兩個三角形是否全等呢現(xiàn)在,我們就一起來探討研究.
二、實踐探索,總結規(guī)律
1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎做一做:給你三條線段,分別為,你能畫出這個三角形嗎
先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟.
步驟:
(1)畫一線段ab使它的長度等于c(4.8cm).
(2)以點a為圓心,以線段b(3cm)的長為半徑畫圓弧;以點b為圓心,以線段a(4cm)的長為半徑畫圓弧;兩弧交于點c.
(3)連結ac、bc.
△abc即為所求
把你畫的三角形與其他同學的圖形疊合在一起,你們會發(fā)現(xiàn)什么
換三條線段,再試試看,是否有同樣的結論
請你結合畫圖、對比,說說你發(fā)現(xiàn)了什么
同學們各抒己見,教師總結:給定三條線段,如果它們能組成三角形,那么所畫的三角形都是全等的.這樣我們就得到判定三角形全等的`一種簡便的方法:如果兩個三角形的三條邊分別對應相等,那么這兩個三角形全等.簡寫為邊邊邊,或簡記為(s.s.s.).
2、問題2:你能用相似三角形的判定法解釋這個(sss)三角形全等的判定法嗎
(我們已經知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形.)
3、問題3、你用這個sss三角形全等的判定法解釋三角形具有穩(wěn)定性嗎
(只要三角形三邊的長度確定了,這個三角形的形狀和大小就完全確定了)
4、范例:
例1如圖19.2.2,四邊形abcd中,ad=bc,ab=dc,試說明△abc≌△cda.解:已知ad=bc,ab=dc,又因為ac是公共邊,由(s.s.s.)全等判定法,可知△abc≌△cda
5、練習:
6、試一試:已知一個三角形的三個內角分別為、、,你能畫出這個三角形嗎把你畫的三角形與同伴畫的進行比較,你發(fā)現(xiàn)了什么
(所畫出的三角形都是相似的,但大小不一定相同).
三個對應角相等的兩個三角形不一定全等.
三、加強練習,鞏固知識
1、如圖,,,△abc≌△dcb全等嗎為什么
2、如圖,ad是△abc的中線,.與相等嗎請說明理由.
四、小結
本節(jié)課探討出可用(sss)來判定兩個三角形全等,并能靈活運用(sss)來判定三角形全等.三個角對應相等的兩個三角不一定會全等.
五、作業(yè)
三角形全等的判定3教案篇6
教學目標
1。通過實際操作理解“學習三角形全等的四種判定方法”的必要性。
2。比較熟練地掌握應用邊角邊公理時尋找非已知條件的方法和證明的分析法,初步培養(yǎng)學生的邏輯推理能力。
3。初步掌握“利用三角形全等來證明線段相等或角相等或直線的平行、垂直關系等”的方法。
4。掌握證明三角形全等問題的規(guī)范書寫格式。
教學重點和難點
應用三角形的邊角邊公理證明問題的分析方法和書寫格式。
教學過程設計
一、實例演示,發(fā)現(xiàn)公理
1。教師出示幾對三角形模板,讓學生觀察有幾對全等三角形,并根據所學過的全等三角形的知識動手操作,加以驗證,同時寫出全等三角形的數學表達式。
2。在此過程當中應啟發(fā)學生注意以下幾點:
(1)可用移動三角形使其重合的方法驗證圖3-49中的三對三角形分別全等,并根據圖中已知的三對對應元素分別相等的條件,可以證明結論成立。如圖3-49(c)中,由ab=ac=3cm,可將△abc繞a點轉到b與c重合;由于∠bad=∠cae=120°,保證ad能與ae重合;由ad=ae=5cm,可得到d與e重合。因此△bad可與△cae重合,說明△bad≌△cae。
(2)每次判斷全等,若都根據定義檢查是否重合是不便操作的,需要尋找更實用的判斷方法——用全等三角形的性質來判定。
(3)由以上過程可以說明,判定兩個三角形全等,不必判斷三條邊、三個角共六對對應元素均相等,而是可以簡化到特定的三個條件,引導學生歸納出:有兩邊和它們的夾角對應相等的兩個三角形全等。
3。畫圖加以鞏固。
教師照課本上所敘述的過程帶領學生分析畫圖步驟并畫出圖形,理解“已知兩邊及夾角畫三角形”的方法,并加深對結論的印象。
二、提出公理
1。板書邊角邊公理,指出它可簡記為“邊角邊”或“sas”,說明記號“sas’的含義。
2。強調以下兩點:
(1)使用條件:三角形的兩邊及夾角分別對應相等。
(2)使用時記號“sas”和條件都按邊、夾角、邊的順序排列,并將對應頂點的字母順序寫在對應位置上。
3。板書定理證明應使用標準圖形、文字及數學表達式,正確書寫證明過程。
如圖3-50,在△abc與△a’b’c’中,(指明范圍)
三、應用舉例、變式練習
1。充分發(fā)揮一道例題的作用,將條件、結論加以變化,進行變式練習,
例1已知:如圖3-51,ab=cb,∠abd=∠cbd。求證:△abd≌△cbd。
分析:將已知條件與邊角邊公理對比可以發(fā)現(xiàn),只需再有一組對應邊相等即可,這可由公共邊相等bd=bd得到。
說明:(1)證明全等缺條件時,從圖形本身挖掘隱含條件,如公共邊相等、公共角相等、對頂角相等,等等。
(2)學習從結論出發(fā)分析證明思路的方法(分析法)。
分析:△abd≌△cbd
因此只能在兩個等角分別所在的三角形中尋找與ab,cb夾兩已知角的公共邊bd。
(3)可將此題做條種變式練習:
練習1(改變結論)如圖3-51,已知ab=cb,∠abd=∠cbd。求證:ad=cd,bd平分∠adc。
分析:在證畢全等的基礎上,可繼續(xù)利用全等三角形的性質得出對應邊相等,即ad=cd;對應角相等∠adb=∠cdb,即bd平分∠adc。因此,通過證明兩三角形全等可證明兩個三角形中的線段相等或和角相關的結論,如兩直線平行、垂直、角平分線等等。
練習2(改變條件)如圖3-51,已知bd平分∠abc,ab=cb。求證:∠a=∠c。
分析:能直接使用的證明三角形全等的條件只有ab=cb,所缺的其余條件分別由公共邊相等、角平分線的定義得出。這樣,在證明三角形全等之前需做一些準備工作。教師板書完整證明過程如下:
以上四步是證明兩三角形全等的基本證明格式。
(4)將題目中的圖形加以有規(guī)律地圖形變換,可得到相關的一組變式練習,使剛才的解題思路得以充分地實施,并加強例題、習題之間的有機聯(lián)系,熟悉常見圖形,同時讓學生總結常用的尋找所缺邊、缺角條件的方法。
練習3如圖3-52(c),已知ab=ae,ad=af,∠1=∠2。求證:db=fe。
分析:關鍵由∠1=∠2,利用等量公理證出∠bad=∠eaf。
練習4如圖3-52(d),已知a為bc中點,ae//bd,ae=bd。求證:ad//ce。
分析:由中點定義得出ab=ac;由ae//bd及平行線性質得出∠abd=∠cae。
練習5已知:如圖3-52(e),ae//bd,ae=db。求證:ab//de。
分析:由ae//bd及平行線性質得出∠adb=∠dae;由公共邊ad=da及已知證明全等。
練習6已知:如圖3-52(f),ae//bd,ae=db。求證:ab//de,ab=de。
分析:通過添加輔助線——連結ad,構造兩個三角形去證明全等。
練習7已知:如圖3-52(g),ba=ef,df=ca,∠efd=∠cab。求證:∠b=∠e。
分析:由df=ca及等量公理得出da=cf;由∠efd=∠cab及“等角的補角相等”得出∠bad=∠efc。
練習8已知:如圖3-52(h),be和cd交于a,且a為be中點,ec⊥cd于c,bd⊥cd于d,ce=⊥bd。求證:ac=ad。
分析:由于目前只有邊角邊公理,因此,必須將角的隱含條件——對頂角相等轉化為已知兩邊的夾角∠b=∠e,這點利用“等角的余角相等”可以實現(xiàn)。
練習9已知如圖3-52(i),點c,f,a,d在同一直線上,ac=fd,ce=db,ec⊥cd,bd⊥cd,垂足分別為c和d。求證:ef//ab。
在下一課時中,可在圖中連結ea及bf,進一步統(tǒng)習證明兩次全等。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國石油大學(北京)《網絡及信息安全技術》2023-2024學年第一學期期末試卷
- 長春光華學院《數據倉庫理論與實踐實驗》2023-2024學年第一學期期末試卷
- 食品加工機械衛(wèi)生級潤滑產品
- 餐飲業(yè)前瞻與策略模板
- 財務團隊商務禮儀模板
- 專業(yè)基礎知識(給排水)-(給水排水)《專業(yè)基礎知識》模擬試卷1
- 生物地理學探究模板
- 商務禮儀講解模板
- 青少年健身指南模板
- 誠信考試-國旗下講話發(fā)言稿
- 2024-2025年中國ETC行業(yè)發(fā)展趨勢預測及投資戰(zhàn)略咨詢報告
- 年度得到 · 沈祖蕓全球教育報告(2024-2025)
- 飛行員心理素質訓練考核試卷
- 2025河北機場管理集團限公司招聘39人高頻重點提升(共500題)附帶答案詳解
- GB/T 17145-2024廢礦物油回收與再生利用導則
- 運輸公司安全隱患大排查整治行動方案
- 道具設計安裝合同模板
- 建筑設計公司員工薪酬方案
- 2024至2030年中國白內障手術耗材行業(yè)投資前景及策略咨詢研究報告
- 艾灸燙傷應急預案
- 體育單杠課件教學課件
評論
0/150
提交評論