強(qiáng)度計(jì)算.材料疲勞與壽命預(yù)測(cè):礦井累積損傷模型:疲勞斷裂力學(xué)原理_第1頁
強(qiáng)度計(jì)算.材料疲勞與壽命預(yù)測(cè):礦井累積損傷模型:疲勞斷裂力學(xué)原理_第2頁
強(qiáng)度計(jì)算.材料疲勞與壽命預(yù)測(cè):礦井累積損傷模型:疲勞斷裂力學(xué)原理_第3頁
強(qiáng)度計(jì)算.材料疲勞與壽命預(yù)測(cè):礦井累積損傷模型:疲勞斷裂力學(xué)原理_第4頁
強(qiáng)度計(jì)算.材料疲勞與壽命預(yù)測(cè):礦井累積損傷模型:疲勞斷裂力學(xué)原理_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

強(qiáng)度計(jì)算.材料疲勞與壽命預(yù)測(cè):礦井累積損傷模型:疲勞斷裂力學(xué)原理1強(qiáng)度計(jì)算基礎(chǔ)1.1材料力學(xué)性能介紹在工程設(shè)計(jì)中,材料的力學(xué)性能是決定結(jié)構(gòu)強(qiáng)度和壽命的關(guān)鍵因素。材料力學(xué)性能主要包括彈性模量、泊松比、屈服強(qiáng)度、抗拉強(qiáng)度、疲勞極限等。這些性能參數(shù)通過實(shí)驗(yàn)測(cè)定,用于材料的選型和結(jié)構(gòu)的強(qiáng)度計(jì)算。1.1.1彈性模量彈性模量(E)是材料在彈性階段抵抗變形的能力,單位為Pa(帕斯卡)。在彈性階段,應(yīng)力與應(yīng)變成正比關(guān)系,比例常數(shù)即為彈性模量。1.1.2泊松比泊松比(ν)是材料橫向應(yīng)變與縱向應(yīng)變的比值,無量綱。當(dāng)材料受到縱向拉伸時(shí),其橫向會(huì)收縮,泊松比描述了這種橫向收縮的程度。1.1.3屈服強(qiáng)度屈服強(qiáng)度(σy1.1.4抗拉強(qiáng)度抗拉強(qiáng)度(σu1.1.5疲勞極限疲勞極限(σf1.2應(yīng)力與應(yīng)變的概念1.2.1應(yīng)力應(yīng)力(σ)是單位面積上的內(nèi)力,描述了材料內(nèi)部的受力狀態(tài)。應(yīng)力分為正應(yīng)力和剪應(yīng)力,正應(yīng)力與材料截面垂直,剪應(yīng)力與材料截面平行。1.2.2應(yīng)變應(yīng)變(ε)是材料在受力作用下發(fā)生的變形程度,無量綱。應(yīng)變分為線應(yīng)變和剪應(yīng)變,線應(yīng)變描述了材料長度的變化,剪應(yīng)變描述了材料角度的變化。1.3強(qiáng)度計(jì)算方法概述強(qiáng)度計(jì)算是評(píng)估材料或結(jié)構(gòu)在給定載荷下是否安全的過程。常見的強(qiáng)度計(jì)算方法包括:1.3.1最大應(yīng)力理論最大應(yīng)力理論認(rèn)為,材料的破壞是由最大正應(yīng)力或最大剪應(yīng)力引起的。在設(shè)計(jì)中,需要確保最大應(yīng)力不超過材料的屈服強(qiáng)度或抗拉強(qiáng)度。1.3.2應(yīng)變能理論應(yīng)變能理論認(rèn)為,材料的破壞是由應(yīng)變能密度超過材料的極限值引起的。應(yīng)變能密度是單位體積內(nèi)儲(chǔ)存的能量。1.3.3疲勞壽命預(yù)測(cè)疲勞壽命預(yù)測(cè)是基于材料的疲勞性能,評(píng)估結(jié)構(gòu)在循環(huán)載荷作用下的壽命。常見的預(yù)測(cè)方法有S-N曲線法、累積損傷理論等。1.3.4礦井累積損傷模型礦井累積損傷模型是針對(duì)礦山設(shè)備和結(jié)構(gòu)在復(fù)雜載荷環(huán)境下的損傷累積和壽命預(yù)測(cè)。該模型考慮了載荷的隨機(jī)性和復(fù)雜性,以及材料的疲勞性能。1.3.5疲勞斷裂力學(xué)原理疲勞斷裂力學(xué)原理研究了材料在循環(huán)載荷作用下裂紋的形成、擴(kuò)展和最終斷裂的過程。關(guān)鍵參數(shù)包括裂紋尖端的應(yīng)力強(qiáng)度因子(K)和裂紋擴(kuò)展速率(da1.3.6示例:使用Python進(jìn)行應(yīng)力應(yīng)變計(jì)算#導(dǎo)入必要的庫

importnumpyasnp

#定義材料參數(shù)

elastic_modulus=200e9#彈性模量,單位:Pa

poisson_ratio=0.3#泊松比

yield_strength=250e6#屈服強(qiáng)度,單位:Pa

#定義載荷和尺寸參數(shù)

force=1000#外力,單位:N

area=0.01#截面積,單位:m^2

#計(jì)算應(yīng)力

stress=force/area

#檢查應(yīng)力是否超過屈服強(qiáng)度

ifstress>yield_strength:

print("材料處于塑性變形狀態(tài)")

else:

print("材料處于彈性變形狀態(tài)")

#計(jì)算應(yīng)變

strain=stress/elastic_modulus

#輸出結(jié)果

print(f"應(yīng)力:{stress:.2f}Pa")

print(f"應(yīng)變:{strain:.6f}")此代碼示例展示了如何使用Python計(jì)算材料在給定載荷下的應(yīng)力和應(yīng)變,并檢查材料是否處于彈性或塑性變形狀態(tài)。通過調(diào)整材料參數(shù)和載荷,可以模擬不同材料和不同載荷條件下的強(qiáng)度計(jì)算。以上內(nèi)容涵蓋了強(qiáng)度計(jì)算基礎(chǔ)的幾個(gè)關(guān)鍵方面,包括材料力學(xué)性能的介紹、應(yīng)力與應(yīng)變的概念,以及強(qiáng)度計(jì)算方法的概述。通過理解和應(yīng)用這些原理,可以有效地進(jìn)行材料和結(jié)構(gòu)的強(qiáng)度分析和設(shè)計(jì)。2材料疲勞原理2.1疲勞斷裂的基本概念疲勞斷裂是材料在交變應(yīng)力作用下,即使應(yīng)力遠(yuǎn)低于其靜載強(qiáng)度,也會(huì)發(fā)生的一種破壞形式。這種斷裂通常發(fā)生在材料的表面或內(nèi)部缺陷處,隨著應(yīng)力循環(huán)次數(shù)的增加,裂紋逐漸擴(kuò)展,最終導(dǎo)致材料的完全斷裂。疲勞斷裂的特性是裂紋的緩慢擴(kuò)展和突然斷裂,這使得疲勞斷裂在工程設(shè)計(jì)中成為一個(gè)重要的考慮因素。2.1.1疲勞斷裂的三個(gè)階段裂紋萌生:在材料的表面或內(nèi)部缺陷處,由于應(yīng)力集中,首先形成微觀裂紋。裂紋穩(wěn)定擴(kuò)展:裂紋一旦形成,就會(huì)在交變應(yīng)力的作用下逐漸擴(kuò)展,但在這個(gè)階段,裂紋的擴(kuò)展速度是緩慢且穩(wěn)定的??焖贁嗔眩寒?dāng)裂紋擴(kuò)展到一定程度,材料的剩余強(qiáng)度不足以抵抗應(yīng)力時(shí),裂紋會(huì)迅速擴(kuò)展,導(dǎo)致材料的突然斷裂。2.2S-N曲線與疲勞極限S-N曲線是描述材料在不同應(yīng)力水平下疲勞壽命的圖表,其中S代表應(yīng)力,N代表應(yīng)力循環(huán)次數(shù)。通過S-N曲線,可以確定材料在特定應(yīng)力水平下的預(yù)期壽命,這對(duì)于預(yù)測(cè)材料在實(shí)際工作條件下的疲勞行為至關(guān)重要。2.2.1疲勞極限疲勞極限,也稱為疲勞強(qiáng)度,是指在無限次應(yīng)力循環(huán)下,材料不會(huì)發(fā)生疲勞斷裂的最大應(yīng)力值。在S-N曲線上,疲勞極限通常對(duì)應(yīng)于曲線的水平部分,表明在該應(yīng)力水平下,材料可以承受無限次的應(yīng)力循環(huán)而不會(huì)斷裂。2.2.2示例:S-N曲線的繪制假設(shè)我們有以下材料的S-N數(shù)據(jù):應(yīng)力S(MPa)循環(huán)次數(shù)N100100000905000008010000007020000006050000005010000000我們可以使用Python的matplotlib庫來繪制S-N曲線:importmatplotlib.pyplotasplt

#S-N數(shù)據(jù)

stress=[100,90,80,70,60,50]

cycles=[100000,500000,1000000,2000000,5000000,10000000]

#繪制S-N曲線

plt.loglog(cycles,stress,marker='o')

plt.xlabel('循環(huán)次數(shù)N')

plt.ylabel('應(yīng)力S(MPa)')

plt.title('材料的S-N曲線')

plt.grid(True)

plt.show()2.3疲勞裂紋的形成與擴(kuò)展機(jī)制疲勞裂紋的形成與擴(kuò)展機(jī)制主要涉及以下過程:裂紋萌生:在材料的表面或內(nèi)部,由于應(yīng)力集中,首先形成微觀裂紋。裂紋擴(kuò)展:裂紋的擴(kuò)展分為兩個(gè)階段:穩(wěn)定擴(kuò)展和快速斷裂。在穩(wěn)定擴(kuò)展階段,裂紋的擴(kuò)展速度與應(yīng)力強(qiáng)度因子和裂紋長度有關(guān),遵循Paris定律。在快速斷裂階段,裂紋迅速擴(kuò)展,導(dǎo)致材料斷裂。2.3.1Paris定律Paris定律描述了裂紋穩(wěn)定擴(kuò)展階段的裂紋擴(kuò)展速率與應(yīng)力強(qiáng)度因子的關(guān)系,公式如下:d其中,da/dN是裂紋擴(kuò)展速率,ΔK2.3.2示例:使用Paris定律計(jì)算裂紋擴(kuò)展速率假設(shè)我們有以下參數(shù):C=mΔK我們可以計(jì)算裂紋擴(kuò)展速率:#定義Paris定律的參數(shù)

C=1e-12

m=3

delta_K=100

#計(jì)算裂紋擴(kuò)展速率

da_dN=C*(delta_K**m)

print(f'裂紋擴(kuò)展速率:{da_dN}m/cycle')通過理解和應(yīng)用這些原理,可以有效地預(yù)測(cè)和控制材料在疲勞條件下的行為,從而提高工程結(jié)構(gòu)的安全性和可靠性。3礦井累積損傷模型3.11累積損傷理論的起源與發(fā)展累積損傷理論,最初由Palmgren和Miner在20世紀(jì)初提出,旨在解釋材料在重復(fù)載荷作用下逐漸累積損傷直至斷裂的現(xiàn)象。這一理論的核心是Miner的線性累積損傷法則,它認(rèn)為材料的總損傷是每次載荷循環(huán)損傷的線性疊加。隨著技術(shù)的發(fā)展,累積損傷理論被廣泛應(yīng)用于各種工程領(lǐng)域,包括礦井結(jié)構(gòu)的疲勞分析。3.1.1發(fā)展歷程1900s:Palmgren和Miner分別獨(dú)立提出了累積損傷的概念,奠定了理論基礎(chǔ)。1950s:累積損傷理論開始被應(yīng)用于航空和汽車工業(yè),以預(yù)測(cè)金屬結(jié)構(gòu)的疲勞壽命。1980s:隨著計(jì)算機(jī)技術(shù)的進(jìn)步,累積損傷模型的計(jì)算變得更加精確,能夠處理更復(fù)雜的載荷譜。2000s至今:累積損傷理論在礦井工程中的應(yīng)用日益廣泛,特別是在預(yù)測(cè)礦井結(jié)構(gòu)的疲勞壽命和安全性方面。3.22礦井結(jié)構(gòu)的疲勞損傷分析礦井結(jié)構(gòu),如巷道、支架和提升設(shè)備,長期處于復(fù)雜多變的載荷環(huán)境中,容易發(fā)生疲勞損傷。疲勞損傷分析是評(píng)估這些結(jié)構(gòu)安全性和預(yù)測(cè)其壽命的關(guān)鍵步驟。3.2.1疲勞損傷分析步驟載荷譜分析:確定礦井結(jié)構(gòu)在使用周期內(nèi)所承受的載荷類型和大小。應(yīng)力應(yīng)變計(jì)算:利用有限元分析等方法,計(jì)算結(jié)構(gòu)在不同載荷下的應(yīng)力應(yīng)變分布。損傷累積計(jì)算:應(yīng)用累積損傷模型,如Miner法則,計(jì)算結(jié)構(gòu)的損傷累積。壽命預(yù)測(cè):根據(jù)損傷累積結(jié)果,預(yù)測(cè)結(jié)構(gòu)的剩余壽命。3.2.2示例:使用Python進(jìn)行應(yīng)力應(yīng)變計(jì)算importnumpyasnp

fromegrateimportodeint

#定義應(yīng)力應(yīng)變關(guān)系的微分方程

defstress_strain(y,t,E,sigma_max):

sigma,epsilon=y

dydt=[0,(sigma_max-sigma)/E]

returndydt

#材料參數(shù)

E=200e9#彈性模量,單位:Pa

sigma_max=100e6#最大應(yīng)力,單位:Pa

#初始條件

y0=[0,0]#初始應(yīng)力和應(yīng)變?yōu)?

#時(shí)間點(diǎn)

t=np.linspace(0,1,100)

#解微分方程

sol=odeint(stress_strain,y0,t,args=(E,sigma_max))

#輸出應(yīng)力應(yīng)變曲線

stress=sol[:,0]

strain=sol[:,1]

#打印結(jié)果

print("Stress:",stress)

print("Strain:",strain)此代碼示例展示了如何使用Python的odeint函數(shù)來解決應(yīng)力應(yīng)變關(guān)系的微分方程,從而計(jì)算出應(yīng)力應(yīng)變曲線。在實(shí)際應(yīng)用中,這一步驟可能需要更復(fù)雜的模型和數(shù)據(jù)輸入。3.33累積損傷模型的建立與應(yīng)用累積損傷模型的建立是基于材料的疲勞特性,通過實(shí)驗(yàn)數(shù)據(jù)和理論分析,確定損傷累積的規(guī)律。應(yīng)用累積損傷模型可以預(yù)測(cè)礦井結(jié)構(gòu)在特定載荷譜下的損傷累積和剩余壽命。3.3.1模型建立實(shí)驗(yàn)數(shù)據(jù)收集:通過疲勞試驗(yàn),收集材料在不同載荷下的損傷數(shù)據(jù)。損傷模型選擇:根據(jù)材料特性和載荷類型,選擇合適的累積損傷模型,如Miner法則、Coffin-Manson方程等。參數(shù)擬合:利用實(shí)驗(yàn)數(shù)據(jù),擬合模型中的參數(shù),如損傷閾值、損傷指數(shù)等。模型驗(yàn)證:通過與實(shí)際結(jié)構(gòu)的損傷情況對(duì)比,驗(yàn)證模型的準(zhǔn)確性和適用性。3.3.2示例:Miner法則的應(yīng)用假設(shè)礦井支架材料的疲勞極限為100MPa,每天承受的載荷分別為80MPa、90MPa和100MPa,各持續(xù)1小時(shí)。根據(jù)Miner法則,損傷累積計(jì)算如下:#疲勞極限

sigma_f=100e6#單位:Pa

#每天承受的載荷

loads=[80e6,90e6,100e6]

#計(jì)算損傷累積

damage=sum([load/sigma_fforloadinloads])

#輸出結(jié)果

print("累積損傷:",damage)此代碼示例使用了Miner法則來計(jì)算礦井支架材料在一天內(nèi)承受不同載荷的累積損傷。需要注意的是,實(shí)際應(yīng)用中,損傷累積通常需要考慮載荷的循環(huán)次數(shù)和損傷的非線性累積效應(yīng)。3.3.3結(jié)論累積損傷模型在礦井工程中的應(yīng)用,不僅有助于理解材料疲勞損傷的機(jī)理,還能為礦井結(jié)構(gòu)的安全評(píng)估和壽命預(yù)測(cè)提供科學(xué)依據(jù)。通過實(shí)驗(yàn)數(shù)據(jù)和理論分析,建立和優(yōu)化累積損傷模型,是確保礦井工程安全性和經(jīng)濟(jì)性的關(guān)鍵步驟。4疲勞斷裂力學(xué)原理4.1斷裂力學(xué)基礎(chǔ)理論斷裂力學(xué)是研究材料在裂紋存在下斷裂行為的學(xué)科,其基礎(chǔ)理論包括線彈性斷裂力學(xué)和彈塑性斷裂力學(xué)。線彈性斷裂力學(xué)主要關(guān)注裂紋尖端的應(yīng)力場(chǎng)和能量釋放率,而彈塑性斷裂力學(xué)則考慮裂紋尖端的塑性區(qū)發(fā)展對(duì)斷裂行為的影響。4.1.1應(yīng)力強(qiáng)度因子應(yīng)力強(qiáng)度因子K是線彈性斷裂力學(xué)中的關(guān)鍵參數(shù),用于描述裂紋尖端的應(yīng)力場(chǎng)強(qiáng)度。對(duì)于一個(gè)無限大平板中的中心裂紋,應(yīng)力強(qiáng)度因子K可以由以下公式計(jì)算:K其中,σ是遠(yuǎn)場(chǎng)應(yīng)力,a是裂紋長度的一半。4.1.2能量釋放率能量釋放率G是裂紋擴(kuò)展時(shí)單位面積上釋放的能量,與應(yīng)力強(qiáng)度因子K有直接關(guān)系。對(duì)于線彈性材料,能量釋放率G和應(yīng)力強(qiáng)度因子K之間的關(guān)系為:G其中,E是材料的彈性模量。4.2疲勞斷裂的微觀機(jī)制疲勞斷裂是材料在交變應(yīng)力作用下,裂紋逐漸擴(kuò)展直至斷裂的過程。微觀機(jī)制主要包括裂紋的萌生、裂紋的穩(wěn)定擴(kuò)展和裂紋的快速擴(kuò)展三個(gè)階段。4.2.1裂紋萌生裂紋萌生通常發(fā)生在材料的表面或內(nèi)部缺陷處,如夾雜物、孔洞或晶界等。在交變應(yīng)力作用下,這些缺陷處的應(yīng)力集中導(dǎo)致裂紋的形成。4.2.2裂紋穩(wěn)定擴(kuò)展裂紋穩(wěn)定擴(kuò)展階段,裂紋以緩慢的速度擴(kuò)展,直至達(dá)到臨界尺寸。這一階段的裂紋擴(kuò)展速率與應(yīng)力強(qiáng)度因子K和裂紋擴(kuò)展閾值Kt4.2.3裂紋快速擴(kuò)展當(dāng)裂紋達(dá)到一定尺寸后,裂紋尖端的應(yīng)力強(qiáng)度因子K超過材料的斷裂韌性Kc4.3疲勞斷裂的預(yù)測(cè)與控制方法疲勞斷裂的預(yù)測(cè)與控制是工程設(shè)計(jì)和維護(hù)中的重要環(huán)節(jié),主要方法包括Paris公式、斷裂韌性測(cè)試和裂紋檢測(cè)技術(shù)。4.3.1Paris公式Paris公式是描述裂紋穩(wěn)定擴(kuò)展速率與應(yīng)力強(qiáng)度因子幅度ΔKd其中,a是裂紋長度,N是應(yīng)力循環(huán)次數(shù),C和m是材料常數(shù)。示例代碼importnumpyasnp

#材料常數(shù)

C=1e-11#m/(MPa√m)

m=3.0

#應(yīng)力強(qiáng)度因子幅度

delta_K=np.array([10,20,30,40,50])*1e6#MPa√m

#計(jì)算裂紋擴(kuò)展速率

da_dN=C*(delta_K)**m

print("裂紋擴(kuò)展速率(m/cycle):",da_dN)4.3.2斷裂韌性測(cè)試斷裂韌性測(cè)試是測(cè)定材料斷裂韌性Kc4.3.3裂紋檢測(cè)技術(shù)裂紋檢測(cè)技術(shù)包括無損檢測(cè)(如超聲波檢測(cè)、磁粉檢測(cè))和有損檢測(cè)(如斷裂試驗(yàn))。無損檢測(cè)技術(shù)可以在不破壞材料的情況下檢測(cè)裂紋,而有損檢測(cè)技術(shù)則通過斷裂試驗(yàn)來評(píng)估材料的斷裂性能。示例代碼#假設(shè)使用超聲波檢測(cè)裂紋

#超聲波檢測(cè)裂紋深度示例

importnumpyasnp

#超聲波參數(shù)

velocity=3430#m/s

frequency=5e6#Hz

wavelength=velocity/frequency#計(jì)算波長

#檢測(cè)信號(hào)

signal=np.array([0.1,0.2,0.3,0.4,0.5])#假設(shè)檢測(cè)信號(hào)強(qiáng)度

#裂紋深度與信號(hào)強(qiáng)度的關(guān)系

#假設(shè)信號(hào)強(qiáng)度與裂紋深度成正比

crack_depth=signal*wavelength

print("裂紋深度(m):",crack_depth)以上代碼僅用于演示如何使用Python進(jìn)行簡(jiǎn)單的計(jì)算,實(shí)際的裂紋檢測(cè)和疲勞斷裂預(yù)測(cè)需要更復(fù)雜的模型和算法,以及專業(yè)的實(shí)驗(yàn)數(shù)據(jù)和分析。5材料壽命預(yù)測(cè)技術(shù)5.11壽命預(yù)測(cè)的重要性與挑戰(zhàn)在工程領(lǐng)域,材料的壽命預(yù)測(cè)是確保結(jié)構(gòu)安全性和經(jīng)濟(jì)性的重要環(huán)節(jié)。礦井設(shè)備的持續(xù)運(yùn)行和惡劣環(huán)境下的工作條件,使得材料疲勞與壽命預(yù)測(cè)成為礦井安全管理和維護(hù)的關(guān)鍵。壽命預(yù)測(cè)的重要性體現(xiàn)在:預(yù)防性維護(hù):通過預(yù)測(cè)材料的剩余壽命,可以提前規(guī)劃維護(hù)和更換,避免突發(fā)故障。成本控制:合理預(yù)測(cè)壽命有助于優(yōu)化設(shè)備使用周期,減少不必要的更換,控制維護(hù)成本。安全性保障:確保材料在安全范圍內(nèi)使用,避免因材料疲勞導(dǎo)致的事故。然而,材料壽命預(yù)測(cè)也面臨著諸多挑戰(zhàn):復(fù)雜的工作環(huán)境:礦井環(huán)境的多變性和不可預(yù)測(cè)性增加了預(yù)測(cè)的難度。材料特性的不確定性:材料的疲勞特性受多種因素影響,如溫度、濕度、應(yīng)力狀態(tài)等,這些因素的不確定性導(dǎo)致預(yù)測(cè)模型的復(fù)雜性。數(shù)據(jù)的缺乏與不一致性:實(shí)際工程中,獲取高質(zhì)量的疲勞數(shù)據(jù)往往困難,且不同來源的數(shù)據(jù)可能存在不一致性。5.22基于累積損傷的壽命預(yù)測(cè)模型5.2.1礦井累積損傷模型礦井設(shè)備在運(yùn)行過程中,材料會(huì)受到周期性的應(yīng)力作用,導(dǎo)致疲勞損傷的累積。累積損傷模型是基于這一原理,通過計(jì)算材料在不同應(yīng)力水平下的損傷累積,來預(yù)測(cè)材料的剩余壽命。其中,Palmgren-Miner線性累積損傷理論是最常用的方法之一。Palmgren-Miner線性累積損傷理論該理論假設(shè)材料的總損傷是各應(yīng)力水平下?lián)p傷的線性疊加。如果材料在某應(yīng)力水平下的壽命為Ni,實(shí)際承受的應(yīng)力循環(huán)次數(shù)為ni,則損傷Di為niN5.2.2疲勞斷裂力學(xué)原理疲勞斷裂力學(xué)主要研究材料在循環(huán)應(yīng)力作用下的裂紋擴(kuò)展行為。其中,Paris公式是描述裂紋擴(kuò)展速率與應(yīng)力強(qiáng)度因子幅度關(guān)系的常用模型。Paris公式d其中,da/dN是裂紋擴(kuò)展速率,ΔK5.33材料壽命預(yù)測(cè)的實(shí)驗(yàn)驗(yàn)證與案例分析5.3.1實(shí)驗(yàn)驗(yàn)證材料壽命預(yù)測(cè)模型的準(zhǔn)確性需要通過實(shí)驗(yàn)來

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論