版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣州三中2025屆高三全國統(tǒng)一考試仿真卷(五)數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的否定是()A. B.C. D.2.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.723.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.若函數(shù)有兩個極值點,則實數(shù)的取值范圍是()A. B. C. D.5.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點,則所成的角的余弦值為()A. B. C. D.6.要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有點的()A.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個單位長度B.橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向右平移個單位長度C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移個單位長度D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平移個單位長度7.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.8.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件9.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是()A.48 B.60 C.72 D.12010.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.11.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.12.已知,,,,.若實數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值二、填空題:本題共4小題,每小題5分,共20分。13.六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).14.函數(shù)在內(nèi)有兩個零點,則實數(shù)的取值范圍是________.15.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實數(shù)等于______.16.的展開式中,的系數(shù)為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓上有一動點,點的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標(biāo)為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.18.(12分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時,設(shè)直線與函數(shù)的圖象相交于不同的兩點,,證明:.19.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間.(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.20.(12分)已知函數(shù)與的圖象關(guān)于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.21.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計線上學(xué)習(xí)時間不少于5小時419線上學(xué)習(xí)時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學(xué)成績不少于120分的學(xué)生中隨機抽取20人,求這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)22.(10分)已知函數(shù).(1)當(dāng)時,解關(guān)于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.本題考查全稱命題的否定,難度容易.2.C【解析】
由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項和公式的應(yīng)用,屬于基礎(chǔ)題.3.A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.4.A【解析】試題分析:由題意得有兩個不相等的實數(shù)根,所以必有解,則,且,∴.考點:利用導(dǎo)數(shù)研究函數(shù)極值點【方法點睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點,再判斷導(dǎo)數(shù)為0的點的左、右兩側(cè)的導(dǎo)數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側(cè)的符號―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側(cè)的導(dǎo)數(shù)值符號相反.5.C【解析】試題分析:設(shè)的交點為,連接,則為所成的角或其補角;設(shè)正四棱錐的棱長為,則,所以,故C為正確答案.考點:異面直線所成的角.6.C【解析】
根據(jù)三角函數(shù)圖像的變換與參數(shù)之間的關(guān)系,即可容易求得.【詳解】為得到,將橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),故可得;再將向左平移個單位長度,故可得.故選:C.本題考查三角函數(shù)圖像的平移,涉及誘導(dǎo)公式的使用,屬基礎(chǔ)題.7.B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎(chǔ).8.A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計算能力.9.A【解析】
對數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個數(shù)字相鄰,利用分類計數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個數(shù)字出現(xiàn)在第位時,同理也有個數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個故滿足條件的不同的五位數(shù)的個數(shù)是個故選本題主要考查了排列,組合及簡單計數(shù)問題,解題的關(guān)鍵是對數(shù)字分類討論,屬于基礎(chǔ)題。10.D【解析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對稱,由題意得出,進(jìn)而可求得實數(shù)的值,并對的值進(jìn)行檢驗,即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當(dāng)時,,,當(dāng)且僅當(dāng)時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對參數(shù)的值進(jìn)行檢驗,考查分析問題和解決問題的能力,屬于中等題.11.D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計算能力,屬于中檔題.12.B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B本題考查了目標(biāo)函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13.135【解析】
根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.本題考查了分步乘法原理,意在考查學(xué)生的計算能力和應(yīng)用能力.14.【解析】
設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價于函數(shù),即有兩個解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時,易知不成立;當(dāng)時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.本題考查了函數(shù)零點問題,意在考查學(xué)生的轉(zhuǎn)化能力和計算能力,畫出圖像是解題的關(guān)鍵.15.【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.16.16【解析】
要得到的系數(shù),只要求出二項式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16此題考查二項式的系數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點軌跡為橢圓(),進(jìn)而求解;(Ⅱ)設(shè)直線方程為,點坐標(biāo)分別為,聯(lián)立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結(jié)合韋達(dá)定理即可求解,而,當(dāng)重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當(dāng)直線的斜率為0時,與曲線無交點.當(dāng)直線的斜率不為0時,設(shè)過點的直線方程為,點坐標(biāo)分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設(shè)點在點的上方,則.本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題18.(1);(2)見解析.【解析】
(1)將所求問題轉(zhuǎn)化為在上有解,進(jìn)一步轉(zhuǎn)化為函數(shù)最值問題;(2)將所證不等式轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為,然后再通過構(gòu)造加以證明即可.【詳解】(1),根據(jù)題意,在內(nèi)存在單調(diào)減區(qū)間,則不等式在上有解,由得,設(shè),則,當(dāng)且僅當(dāng)時,等號成立,所以當(dāng)時,,所以存在,使得成立,所以的取值范圍為。(2)當(dāng)時,,則,從而所證不等式轉(zhuǎn)化為,不妨設(shè),則不等式轉(zhuǎn)化為,即,即,令,則不等式轉(zhuǎn)化為,因為,則,從而不等式化為,設(shè),則,所以在上單調(diào)遞增,所以即不等式成立,故原不等式成立.本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)證明不等式,這里要強調(diào)一點,在證明不等式時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理,本題是一道有高度的壓軸解答題.19.(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見解析.【解析】
(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時,取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點坐標(biāo)后,可得到切線方程;(3)由極值點的定義可知是的兩個不等正根,由判別式大于零得到的取值范圍,同時得到韋達(dá)定理的形式;化簡為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域為,當(dāng)時,,,當(dāng)和時,;當(dāng)時,,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時取等號),切線的斜率存在最小值,,解得:,,即切點為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個不等正根.則,解得:,且,.,,,即不等式成立.本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識;本題中證明不等式的關(guān)鍵是能夠通過極值點的定義將問題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗栴}.20.(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點,,又,當(dāng)時,,曲線在點處的切線為,即,代入點,得,即,構(gòu)造函數(shù),當(dāng)時,,當(dāng)時,,且,當(dāng)時,單調(diào)遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時,;當(dāng)時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當(dāng)時,.所以正整數(shù)的最小值為2.本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新版承攬加工合同書范文
- 2025法人向公司借款合同
- 2025年度溫室大棚租賃與現(xiàn)代農(nóng)業(yè)技術(shù)合作合同3篇
- 2025年度農(nóng)村出租房租賃與農(nóng)村環(huán)保產(chǎn)業(yè)合作合同
- 二零二五年度電影宣傳推廣與營銷合同2篇
- 二零二五年度股權(quán)代持服務(wù)協(xié)議:涉及企業(yè)并購的綜合性協(xié)議3篇
- 二零二五年度農(nóng)村宅基地房屋租賃與農(nóng)村文化傳承合同
- 二零二五年度展臺搭建與展覽展示合同3篇
- 二零二五年度法人代表變更與股權(quán)收購協(xié)議3篇
- 2025年度液壓設(shè)備維修保養(yǎng)及安全檢測合同3篇
- 《測土配方施肥》課件
- 人教版2024-2025學(xué)年第一學(xué)期八年級物理期末綜合復(fù)習(xí)練習(xí)卷(含答案)
- 職業(yè)健康檢查管理制度
- 電梯維保管理體系手冊
- 2024年國家電網(wǎng)招聘之通信類題庫及參考答案(考試直接用)
- 第12課《詞四首》課件+2023-2024學(xué)年統(tǒng)編版語文九年級下冊
- 2024年R1快開門式壓力容器操作證考試題庫及答案
- 《數(shù)學(xué)物理方法》期末測試卷及答案
- 《上帝擲骰子嗎:量子物理史話》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 鐵路工務(wù)勞動安全
- 滬科版九年級物理下冊教案全冊
評論
0/150
提交評論