浙江省初中2024年九年級下學(xué)期數(shù)學(xué)中考模擬試卷(附參考答案)_第1頁
浙江省初中2024年九年級下學(xué)期數(shù)學(xué)中考模擬試卷(附參考答案)_第2頁
浙江省初中2024年九年級下學(xué)期數(shù)學(xué)中考模擬試卷(附參考答案)_第3頁
浙江省初中2024年九年級下學(xué)期數(shù)學(xué)中考模擬試卷(附參考答案)_第4頁
浙江省初中2024年九年級下學(xué)期數(shù)學(xué)中考模擬試卷(附參考答案)_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

九年級下學(xué)期數(shù)學(xué)中考模擬試卷

一、選擇題(本題有10小題,每題3分,共30分。每小題列出的四個備選項中只有一個是符合

題目要求

1.計算-2-8的結(jié)果是()

A.-6B.-10C.10D.6

2.據(jù)科學(xué)家估計,地球的年齡大約是4600000000年,將數(shù)據(jù)4600000000用科學(xué)記數(shù)法表示應(yīng)為()

A.0.46x101。B.4.6x109C.46x108D.4.6><108

3.如圖所示幾何體的俯視圖是()

/—7

4.高速公路是指專供汽車高速行駛的公路.高速公路在建設(shè)過程中,通常要從大山中開挖隧道穿過,把

道路取直以縮短路程.其中的數(shù)學(xué)原理是()

A.兩點之間線段最短B.兩點確定一條直線

C.平行線之間的距離最短D.平面內(nèi)經(jīng)過一點有無數(shù)條直線

5.下列函數(shù)中,函數(shù)值y隨x的增大而減小的是()

6

A.y=6xB.y=-6xD.

6.若。>6,則下列不等關(guān)系一定成立的是()

h

A.q+c>b+cB.a-c<b-cC.ac>bcD.

7.從某個月的月歷表中取一個2x2方塊.已知這個方塊所圍成的4個方格的日期之和為44,求這4個方

格中的日期.若設(shè)左上角的日期為x,則下列方程正確的是()

A.x+(x+1)+(x+7)+(x+14)=44

B.x+(x+1)+(x+6)+(x+12)=44

C.x+(x+1)+(x+7)+(x+8)=44

D.x+(x+1)+(x+6)+(x+7)=44

8.如圖,在RtZ\45C中,ZACB=90°,CD為45邊上的高線,設(shè)N4,ZB,N4C5所對的邊分別為

b,c,貝!J()

A.c=bcos4+Qsin5B.c=bsiih4+asin5

C.c=bs\nA+acosBD.c=bcosA+acosB

9.關(guān)于二次函數(shù)>=Q(X-1)(x-3)+2(aVO)的下列說法中,正確的是()

A.無論。取范圍內(nèi)的何值,該二次函數(shù)的圖象都經(jīng)過(1,0)和(3,0)這兩個定點

B.當(dāng)x=2時,該二次函數(shù)取到最小值

C.將該二次函數(shù)的圖象向左平移1個單位,則當(dāng)x<0或x>2時,y<2

D.設(shè)該二次函數(shù)與x軸的兩個交點的橫坐標(biāo)分別為冽,n(m<n),則1<加V"<3

10.如圖,N3是。。的直徑,弦CDL/8于點£,在3c上取點尸,使得CF=CE,連結(jié)4F交CD于點G,

連結(jié)40.若CG=GR則/"的值等于()

.41)-

D

A石+1R石+3「5-1n3-石

2222

二、填空題(本題有6小題,每題3分,共18分)

11.分解因式:mx2-m=.

12.盒中有加枚黑棋和〃枚白棋,這些棋除顏色外無其它差別.從盒中隨機取出一枚棋子,如果它是黑棋

的概率是:,則加關(guān)于"的關(guān)系表達式為.

jD?r\r

13.如圖,直線冽,〃被一組平行線a,b,c所截.若=,貝IJ'=

BC2EF

14.已知△48C的外接圓的半徑為6,若N/=45。,N3=30。,則4B的長為.

15.若。=2-6,ab=t-1,貝!J(a2-1)(Z?2-1)的最小值為.

16.如圖,在等腰Rt^ABC中,ZACB=90°,若點E,廠分別在邊/C和邊5c上,沿直線EF將

翻折,使點C落于△48C所在平面內(nèi),記為點D.直線CD交48于點G.

(1)若CF落在邊上,貝I]'=;

an

(2)若業(yè)入,則tan/CER=(用含的代數(shù)式表示).

G7/

三、解答題(本題有8小題,共72分)

17.計算6+(-1」),方方同學(xué)的計算過程如下,原式=6<-I+61=-12+18=6.請你判斷

2323

方方的計算過程是否正確,若不正確,請你寫出正確的計算過程.

18.端午節(jié)是中國的傳統(tǒng)節(jié)日,民間有端午節(jié)吃粽子的習(xí)俗,在端午節(jié)來臨之際,某校七、八年級開展了

一次“包粽子”實踐活動,對學(xué)生的活動情況按10分制進行評分,成績(單位:分)均為不低于6的整數(shù)、

為了解這次活動的效果,現(xiàn)從這兩個年級各隨機抽取10名學(xué)生的活動成績作為樣本進行活整理,并繪制

統(tǒng)計圖表,部分信息如表:

八年級10名學(xué)生活動成績統(tǒng)計表

成績/分678910

人數(shù)12ab2

已知八年級10名學(xué)生活動成績的中位數(shù)為8.5分.

請根據(jù)以上信息,完成下列問題:

七年級10名學(xué)生活動成績扇形統(tǒng)計圖

(1)樣本中,七年級活動成績?yōu)?分的學(xué)生數(shù)是,七年級活動成績的眾數(shù)為分;

(2)a=,b=:

(3)若認(rèn)定活動成績不低于9分為“優(yōu)秀”,根據(jù)樣本數(shù)據(jù),判斷本次活動中優(yōu)秀率高的年級是否平均

成績也高,并說明理由.

19.如圖,在△48C中,AB>AC,點。在48邊上,點E在/C邊上(點£不與/,C重合),且

=ZB.

(2)若AE=EC=2AD,求——的值.

AB

(3)若48=6,ZC=4,求40長的取值范圍.

20.已知點Z(mi,zu),B(加2,"2)(7MI<??/2)在一次函數(shù)的圖象上.

C1)用含有刃1,m,mi,〃2的代數(shù)式表示上的值.

(2)若加i+加2=36,m+n2=kb+4,b>2.試比較m和〃2的大小,并說明理由.

21.如圖,在正五邊形/BO中,連結(jié)[(:CE,CE交/。于點E

(1)求,(〃)的度數(shù).

(2)已知46-2,求。尸的長.

22.數(shù)學(xué)實驗

生活中,常常遇到需要測量物體長度、角度的情況,小聰同學(xué)思考:是否有既能測量長度,又能測量

角度的多功能直尺?

小聰想自己做這樣一把尺子:如圖1,小聰準(zhǔn)備了兩條寬度為3c加的矩形紙帶,并在點C處用可以轉(zhuǎn)

動的紐扣固定.小聰借助直角三角板的特殊度數(shù),比較容易的找到表示90°,60°,45°,30。角的刻度位置.那

圖1圖2圖3

(1)如圖2,小聰將兩條紙條疊合形成的四邊形48CD畫出來,并分別作邊D4,R4的延長線/巴

.小聰發(fā)現(xiàn):①四邊形/5CZ)是菱形;②NE4H=2NACD.請證明這兩個結(jié)論.

(2)小聰發(fā)現(xiàn),在(1)的基礎(chǔ)上,表示90°,60°,45°,30。角的刻度位置可以用三角形的邊角關(guān)系

表示出來,當(dāng)NE4〃=90。時,N/CD=45。,則有CE=/E=3c加,因此表示90。角的位置就可以通過計算

找到.請利用小聰?shù)乃悸罚愠霰硎?0。角的位置與點C的距離(精確到0.01).(參考數(shù)據(jù):0*1.414,

百句.732,、巧=2一236).

(3)在以上思路啟發(fā)下,小聰發(fā)現(xiàn),在(1),(2)的基礎(chǔ)上,對于任意位置的刻度的表示,只要完成

三步任務(wù):第一步,測量出直角△/<五的直角邊CE的長度如第二步,計算出上的值,這個值恰好是

m

Na的正切值,即tana=';第三步,利用計算器算出a的值,并在尺子上標(biāo)出刻度即可.做出的尺子如

m

圖3所示.

請根據(jù)以上思路,計算出圖2中CE的長度分別為4,2,1時,表示的角的刻度是多少(精確到分).

(參考數(shù)據(jù):tan4°12'~0.34,tan4°18'-0.752,tan56°18,~1.4994,tan56°24,-1.5051,tan71°30,-2.989,

tan71°36,~3.006).

23.某個農(nóng)場有一個花卉大棚,是利用部分墻體建造的.其橫截面頂部為拋物線型,大棚的一端固定在墻

體。4上,另一端固定在墻體3c上,其橫截面有2根支架DE,FG,相關(guān)數(shù)據(jù)如圖1所示,其中支架DE

=BC,OF=DF=BD,這個大棚用了400根支架.

圖1圖2

為增加棚內(nèi)空間,農(nóng)場決定將圖1中棚頂向上調(diào)整,支架總數(shù)不變,對應(yīng)支架的長度變化,如圖2所

示,調(diào)整后。與£上升相同的高度,增加的支架單價為60元/米(接口忽略不計),需要增加經(jīng)費32000

元.

(1)分別以O(shè)B和OA所在的直線為x軸和y軸建立平面直角坐標(biāo)系.

①求出改造前的函數(shù)解析式.

②當(dāng)CO=1米,求GG的長度.

(2)只考慮經(jīng)費情況下,求出C。的最大值.

24.如圖,在矩形/BCD中,點E,尸分別為對邊/D,8c的中點,線段所交“C于點O,延長CD于點

G,連結(jié)GE并延長交NC于點。,連結(jié)G廠交/C于點尸,連結(jié)。尸.

(1)若。G=-CD.

①求證:點0為O/的中點.

②若。4=1,ZACB=30°,求。尸的長.

(2)求證:FE平分NQFP.

PF

(3)若CD=mDG,求-.(結(jié)果用含用的代數(shù)式表示).

QF

答案

1.【答案】B

2.【答案】B

3.【答案】B

4.【答案】A

5.【答案】B

6.【答案】A

7.【答案】C

8.【答案】D

9.【答案】C

10.【答案】A

11.【答案】m(x+1)(x-1)

12.【答案】2m=3n

13.【答案】、

14.【答案】久(一\,2

15.【答案】-4

16.【答案】(1)、5I

⑵i

k

17.【答案】解:方方的計算過程不正確,

正確的計算過程是:

32

原式=6+(?*)

66

=6+(--)

6

=6x(-6)

=-36.

18.【答案】(1)1;8

(2)2;3

(3)優(yōu)秀率高的年級不是平均成績也高,理由如下,

七年級優(yōu)秀率為20%+20%=40%,平均成績?yōu)椋?xl0%+8x50%+9x20%+10x20%=8.5,

3+,

八年級優(yōu)秀率為:xlOO%?SO%>40%,平均成績?yōu)椋骸獂(6+7?22X3x9+2x10)-83<8J

1010

.?.優(yōu)秀率高的年級為八年級,但平均成績七年級更高,

優(yōu)秀率高的年級不是平均成績也高.

19.【答案】(1)證明:VZAED=ZB,NA=NA,

AAAED^AABC,

AAD:AC=AE:AB,

即AD?AB=AE?AC;

(2)解::AE=EC=2AD,

.?.設(shè)AD=k,則AE=EC=2k,

;.AC=AE+EC=4k,

由(1)可知:AD?AB=AE?AC,

k?AB=2k*4k,

AB=8k,

?仞_-_?

**AB848;

(3)解:由(1)可知:AD?AB=AE?AC,

VAB=6,AC=4,

.\6?AD=4?AE,

2

Aly——

3

?.?點E在AC邊上,AC=4,

/.0<AE<4,

2g

33

Q

即0VAD<a.

20.【答案】(1)),點A(mi,ni),B(m2,m)(mi<m2)在一次函數(shù)y=kx+b的圖象上,

/.ni=kmi+b,112=kmz+b,

Ani-n2=(kmi+b)-(kim+b)=k(mi-m2),

Vmi<m2,

Ami-m2,0,

..二二;

ml-m2

(2)m>n2,理由如下:

,/ni+n2=(kmi+b)+(kmz+b)=k(mi+m?)+2b

又*.*ni+n2=kb+4,

.'.k(mi+m2)+2b=kb+4,

Vmi+m2=3b,

.'.3kb+2b=kb+4,

解得:一二,

h

Vb>2,

:.k=-h.(),

b

...一次函數(shù)y=kx+b中y隨x的增大而減小.

XVmi<m2,

/.ni>n2.

21.【答案】(1)解:?.,五邊形/BCDE是正五邊形,

??4B=BC=CD?DE-AE,BA\\CE,AD^BC,DE\1(,|(W?C£-

ZZME=1(5-2)x1800=108°.

四邊形.4伙尸是菱形,

???/,」(.CAD,

同理可求:.(-,

ZBAC=ZCAD=ZDAE=卜10X36;

(2)解:?.?四邊形」灰尸是菱形,

.?.(下…=加=2.

ZB4C?ZCAD-£DAE-360,

同理/力(力36。,

.??A/XTme,

.CDAD,

??-,即m《/)

DICD

設(shè)力”t,貝!r+2,

2:=v(v*2),即Jo,

解得i_<S|(舍去負(fù)值).

二O尸的長是、X|.

22.【答案】(1)由題意可知四邊形ABCD是平行四邊形,

?.?兩張紙條一樣寬,所以兩組對邊間的距離不變,

根據(jù)面積不變的原理可以得到CB=CD,

四邊形ABCD是菱形.

VZFAH=ZBAD,

.\ZBAD=2ZACD,

.,.ZFAH=2ZACD;

(2)由(1)可知NFAH=2/ACD,

當(dāng)NFAH=60。時,ZACD=30°,

tanZACD=tan300="'-',

3CE

:.CE=3VI-5.20,即表示60。角的位置與點C的距離為5.20;

(3),/tan"=-,

2in

二當(dāng)m=4時,tan'='=0.75,a?73°48';

24

3

當(dāng)m=2時,tana=、=1.5,a-112°36,;

當(dāng)m=l時,tana=-=3,a-143°12,.

1

23.【答案】(1)解:(1)①如圖,以O(shè)為原點,分別以O(shè)B和OA所在的直線為x軸和y軸建立如圖所

示的平面直角坐標(biāo)系,

由題意可知:A(0,1),E(4,3.4),C(6,3.4),

設(shè)改造前的拋物線解析式為y=ax2+bx+c,

36a+66+c=3.4

I

a-------

10

解得:6=1“

c=I

「改造前的拋物線的函數(shù)表達式為y=1-x*-x-l;

10

②如圖,建立與(1)相同的平面直角坐標(biāo)系,

由①知改造前拋物線的解析式為,川\,」,

x=_J、=5

:對稱軸為直線、j?i一,

2l~ioj

設(shè)改造后拋物線解析式為:*v.*ex:?d\?I,

?二調(diào)整后(,與/:上升相同的高度,且(丁I,

:對稱軸為直線t5,則有-g-

2c

當(dāng)上二6時,v-44,

..36(—6J-I44,

17/17

C.《/-9

12012

,改造后拋物線解析式為:y,

當(dāng)「2時,

改造前:y.=?—x2J+2+1=,

'105

(2)如(2)題圖,設(shè)改造后拋物線解析式為yax2-10ax+l,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論