版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省百校2025年高三TOP20十二月聯(lián)考(全國Ⅰ卷)數(shù)學(xué)試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)不等式組,表示的平面區(qū)域為,在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.2.五名志愿者到三個不同的單位去進(jìn)行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.3.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點(diǎn)為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機(jī)選取1個數(shù),則其和等于11的概率是().A. B. C. D.4.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.5.在平行四邊形中,若則()A. B. C. D.6.已知向量,,若,則()A. B. C.-8 D.87.函數(shù)的大致圖象為()A. B.C. D.8.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.9.已知向量,,若,則與夾角的余弦值為()A. B. C. D.10.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.11.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.312.已知集合A,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿足,則的最大值為________.14.已知集合,若,且,則實(shí)數(shù)所有的可能取值構(gòu)成的集合是________.15.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機(jī)取出的種子,則取出了帶麥銹病種子的概率是_____.16.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某商場為改進(jìn)服務(wù)質(zhì)量,隨機(jī)抽取了200名進(jìn)場購物的顧客進(jìn)行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認(rèn)為顧客購物體驗的滿意度與性別有關(guān)?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據(jù)統(tǒng)計,在此期間顧客購買該商品的支付情況如下:支付方式現(xiàn)金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應(yīng)事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數(shù)學(xué)期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點(diǎn)M(2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.19.(12分)在平面直角坐標(biāo)系中,直線與拋物線:交于,兩點(diǎn),且當(dāng)時,.(1)求的值;(2)設(shè)線段的中點(diǎn)為,拋物線在點(diǎn)處的切線與的準(zhǔn)線交于點(diǎn),證明:軸.20.(12分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.21.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點(diǎn)將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大??;②在棱PC上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.22.(10分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.2.D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.3.A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機(jī)選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4.A【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點(diǎn)處取得最大值,則,即.故選:A本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.5.C【解析】
由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因為,
所以
,
,所以,故選C.本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).6.B【解析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B本題考查向量的坐標(biāo)運(yùn)算和模長的運(yùn)算,屬于基礎(chǔ)題.7.A【解析】
利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.8.A【解析】
由題意,根據(jù)雙曲線的對稱性知在軸上,設(shè),則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.9.B【解析】
直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.10.B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學(xué)生的運(yùn)算求解能力.11.D【解析】
在等差數(shù)列中,利用已知可求得通項公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時,取最大即可求得結(jié)果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數(shù),在時,單調(diào)遞減,且;在時,單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.本題考查等差數(shù)列的通項公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.12.A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出不等式組所表示的平面區(qū)域,將目標(biāo)函數(shù)看作點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,代入點(diǎn)A的坐標(biāo)可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點(diǎn),目標(biāo)函數(shù)表示點(diǎn)與可行域的點(diǎn)所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.本題考查求目標(biāo)函數(shù)的最值,關(guān)鍵在于明確目標(biāo)函數(shù)的幾何意義,屬于中檔題.14..【解析】
化簡集合,由,以及,即可求出結(jié)論.【詳解】集合,若,則的可能取值為,0,2,3,又因為,所以實(shí)數(shù)所有的可能取值構(gòu)成的集合是.故答案為:.本題考查集合與元素的關(guān)系,理解題意是解題的關(guān)鍵,屬于基礎(chǔ)題.15.【解析】
求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.本題主要考查了體積類的幾何概型問題,屬于基礎(chǔ)題.16.【解析】試題分析:由坐標(biāo)系可知考點(diǎn):復(fù)數(shù)運(yùn)算三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)有97.5%的把握認(rèn)為顧客購物體驗的滿意度與性別有關(guān);(2)67元,見解析.【解析】
(1)根據(jù)表格數(shù)據(jù)代入公式,結(jié)合臨界值即得解;(2)的可能取值為40,60,80,1,根據(jù)題意依次計算概率,列出分布列,求數(shù)學(xué)期望即可.【詳解】(1)由題得,所以,有97.5%的把握認(rèn)為顧客購物體驗的滿意度與性別有關(guān).(2)由題意可知的可能取值為40,60,80,1.,,,.則的分布列為4060801所以,(元).本題考查了統(tǒng)計和概率綜合,考查了列聯(lián)表,隨機(jī)變量的分布列和數(shù)學(xué)期望等知識點(diǎn),考查了學(xué)生數(shù)據(jù)處理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18.(1)l:,C方程為;(2)=【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.
(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果.【詳解】(1)曲線C的參數(shù)方程為(m為參數(shù)),兩式相加得到,進(jìn)一步轉(zhuǎn)換為.直線l的極坐標(biāo)方程為ρcos(θ+)=1,則轉(zhuǎn)換為直角坐標(biāo)方程為.(2)將直線的方程轉(zhuǎn)換為參數(shù)方程為(t為參數(shù)),代入得到(t1和t2為P、Q對應(yīng)的參數(shù)),所以,,所以=.本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.19.(1)1;(2)見解析【解析】
(1)設(shè),,聯(lián)立直線和拋物線方程,得,寫出韋達(dá)定理,根據(jù)弦長公式,即可求出;(2)由,得,根據(jù)導(dǎo)數(shù)的幾何意義,求出拋物線在點(diǎn)點(diǎn)處切線方程,進(jìn)而求出,即可證出軸.【詳解】解:(1)設(shè),,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設(shè),,由,得,從而拋物線在點(diǎn)點(diǎn)處的切線方程為,即,令,得,由(1)知,從而,這表明軸.本題考查直線與拋物線的位置關(guān)系,涉及聯(lián)立方程組、韋達(dá)定理、弦長公式以及利用導(dǎo)數(shù)求切線方程,考查轉(zhuǎn)化思想和計算能力.20.(Ⅰ),.(Ⅱ)見解析【解析】
(1)由,分和兩種情況,即可求得數(shù)列的通項公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當(dāng)時,,得;當(dāng)時,,整理,得.?dāng)?shù)列是以1為首項,2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.本題主要考查根據(jù)的關(guān)系式求通項公式以及利用等比數(shù)列的前n項和公式求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.21.Ⅰ詳見解析;Ⅱ①,②或.【解析】
Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點(diǎn)A為坐標(biāo)原點(diǎn),分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,可以求出相應(yīng)點(diǎn)的坐標(biāo),求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大??;求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當(dāng)沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點(diǎn)A為坐標(biāo)原點(diǎn),分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設(shè)平面PBC的法向量為y,,則,取,得0,,設(shè)平面PCD的法向量b,,則,取,得1,,設(shè)二面角的大小為,可知為鈍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園上下學(xué)安全
- 康復(fù)護(hù)理論文答辯
- 文明食堂創(chuàng)建發(fā)言材料
- 2025涉外合同中外合作出版合同
- 合同執(zhí)行風(fēng)險提醒通知函
- 2025農(nóng)村住房的轉(zhuǎn)讓合同
- 2025建造合同核算講義liydg
- 2025路面工程項目勞務(wù)分包合同
- 2025機(jī)電設(shè)備采購合同范文
- 2025關(guān)于房屋裝修管理服務(wù)合同模板
- 小兒甲型流感護(hù)理查房
- 霧化吸入療法合理用藥專家共識(2024版)解讀
- 寒假作業(yè)(試題)2024-2025學(xué)年五年級上冊數(shù)學(xué) 人教版(十二)
- 銀行信息安全保密培訓(xùn)
- 市政道路工程交通疏解施工方案
- 2024年部編版初中七年級上冊歷史:部分練習(xí)題含答案
- 拆遷評估機(jī)構(gòu)選定方案
- 床旁超聲監(jiān)測胃殘余量
- 上海市松江區(qū)市級名校2025屆數(shù)學(xué)高一上期末達(dá)標(biāo)檢測試題含解析
- 綜合實(shí)踐活動教案三上
- 《新能源汽車電氣設(shè)備構(gòu)造與維修》項目三 新能源汽車照明與信號系統(tǒng)檢修
評論
0/150
提交評論