版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
PedroCorreia:LauraFrías:IvánMoya:WindResourceAssessmentandPrediction-EPRTheNumericalWeatherPredictionmodels(NWP),havebeentraditionallyusedtopredicttherealstateofearth'satmosphere.Theinitialstateoftheatmosphere(ANALYSIS)isreproducedusingmeasurementsfromsatellites,weatherstations,etc,andconvertedtoaregulargridthatcanbeusedtofeedthemesoescalemodel.Byresolvingtheprimitiveequationswiththatinputdata,theNWPmodelscanpredicttheweatherinthefuture.There'sdifferenttypesofatmosphericmodels:Global:GlobalForecastingsystem(GFS)fromNcep/NCARandtheECMWFGlobalmodel,...Regional:Skiron;EtaModel;WRF;MM5,Hirlam;Aladin,...NWP:MesoescaleModels–ShortDescriptionMesoescalemodelthatusesthebaseoftheETAmodel.RequiresanUNIXOperatingSystem;Itisabletousetheweatherinputdatafrom;GFS(GlobalForecastingSystem);NCEP/NCARReanalysis1;ECMWF(GlobalModel)?CENERworkswithSKIRONsinceOctober,2023.CENERworkswithSKIRONsinceOctober,2023.Itwasfirstconfiguredtorunreal-timeforecasts,allowingCENERtoobtaindailyweatherpredictions.Fromsometimenow,themodelisalsobeenusedtowindanddirectsolarradiationresourceassessmentinanwiderangeoflocationsthroughouttheglobe.Togeneratewind/solarradiationmaps,it'sdesirabletorunSKIRONaslongaspossible(morethan5years),inordertoobtainthelongtermbehaviorofthedifferentmeteorologicalvariables,suchaspressure,windvelocityanddirection(atseveralheightsabovegroundlevel),directsolarradiation,temperature,etc.NWP:MesoescaleModels–SKIRON
SKIRON:Real-timepredictionsIt'sexecutedin16processorswithanhorizonof180ph->5h30minHorizontalResolution:0.1ox0.1o(~10kmx10km)->341x281ptsVerticalResolution:38Etaverticallevels.NonestingTemporalresolution:outputfrequency=1h(180dailyfiles)Dailydownloadandstorageof:GFS12UTC,SST,SnowcoverandSnowdepthBackupsystem:Thesamemodelconfiguration,indifferentmachineswhicharelocatedinanotherarea.Thisallowsustoguaranteetheclientsforecastsincaseofafailureinthemainsystem(powerfailure,computermalfunction,networkproblems,etc).WindForecastandWindEnergyproductionusingSKIRON
SKIRON:Real-timeReal-timedomainfromOctober2023untilNovember2023.DomainsinceNovember2023untilnow.WindForecastandWindEnergyproductionusingSKIRON
Intheelectricitygridatanymomentbalancemustbemaintainedbetweenelectricityconsumptionandgeneration-otherwisedisturbancesinpowerqualityorsupplymayoccur.
Windgenerationisadirectfunctionofwindspeedand,incontrasttoconventionalgenerationsystems,isnoteasilydispatchable.Fluctuationsofwindgenerationthusreceiveagreatamountofattention.
Managingthevariabilityofwindgenerationisthekeyaspectassociatedtotheoptimalintegrationofthatrenewableenergyintoelectricitygrids.Reasonforwindpowerforecasts
Statisticalpredictionmethodsarebasedononeorseveralmodels(linearandnon-linear)thatestablishtherelationbetweenhistoricalvaluesofpower,aswellashistoricalandforecastvaluesofmeteorologicalvariables,andwindpowermeasurements.
Modelparametersareestimatedfromasetofpastavailabledata,andtheyareregularlyupdatedduringonlineoperationbyaccountingforanynewlyavailableinformation(i.e.meteorologicalforecastsandpowermeasurements).StatisticalapproachtowindpowerFORECASTSFORTHEDAILYMARKET.LocalPredisoperationalsince2023andhasbeencontinuouslydevelopedsincethen.Reliabilityandaccuracyarethemaincharacteristicsofthesystem.
Reliabilityisbasedontheredundancyof:Hardware.Inputdata.Processes.Accuracyisobtainedthroughthecombinationofforecastswithdifferentinformation:“multi-modelensemble”.SupportVectorMachinetechnology,PCAalgorithms,dataqualitycontrol.Forecastsforoffshorewindfarms:Windfarmenergyproduction.Waves(WAM4highresolutionwaveforecasts).reducedvisibility.Operationalsince2001DESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMGFSSKIRONECMWFPCAMOSENSEMBLEMOS2DELIVERYFTPCENERFTPCLIENTFTPAGENTSVMZAMUDIOCENERMultimodelensembleDESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMCombinationAlgorithmDESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMLocalPredincludesacombinationalgorithmdevelopedincollaborationwithDTU-IMM.
Thelevelofimprovementdependsontheerroroftheindividualforecastsandonthelevelofcorrelationbetweenthem.
Thecombinationisabletoimprovethebestindividualforecast.windfarmsclusteringanalysisEvolutionerrorindexvsthenumberofagreggatedwindfarmswindfarmsclusteringanalysisEconomicimpactobtainedbytheaggregationofwindfarmsFORECASTSFORTHEINTRADAYMARKETSIntra-dailymarketprocess.Focusonveryshort-termforecasts
TheactualSpanishelectricalmarket,allowsustocorrectthewindenergyforecastingpresentedinthedailymarketbymeansoftheintradailymarket.Thismarketisorganizedintosixsessionsandagentsthathavepreviouslyparticipatedinthedailymarketcanpresentnewprogramofproduction.
Thenewpredictionsmustbepresentedbetweentheopeningandclosinghoursofthesession.
Thus,ineachintradailysession,wecorrectamaximumoffivepredictions,andtakingintoaccounttheclosinghourofthesession,wecanusefromfourthtoeighthstepahead.Thereforetheimportanceoftheshorttimeforecastandsotheneedofashorttimemodelfallshere.Intra-dailymarketprocess.Focusonveryshort-termforecasts
Anewmodelforshort-termpredictionhasbeendevelopedtakingintoaccounttheSpanishmarketrules.Thismodelisfocusedinshortforecastinghorizons.First,itusesonlinepowerproductiondataofthewindfarmstobuilddifferenttimeseriesmodels(Box-JenkinsmethodologyandaversionofHoltWintersAlgorithm).Ontheotherhand,itutilizesexistingforecastsforthedailymarketproducedbyCENER’sLocalPredmodelbasedonmesoscaleNWPandMOScorrections.Finallyitimplementsacombinationalgorithmthatofferstheoptimalforecastforeachhorizon.MethodologyoftheshorttimeforecastingmodelofCENERResultsobtainedWepresenttheresultsobtainedfromtheCENERshorttimemodelappliedonamediumwindfarmfromSpainbetweenFebruaryandDecember.Wepresenttheimprovementofthenewmodelagainstthepersistenceasshorttimepredictionandagainstthedailymarketforecasting.EUROPEANPROJECTSR+DEuropeanprojects(VIandVIIFrameworkProgram):UPWIND
“Findingdesignsolutionsforverylargewindturbines”POW’WOW
“PredictionOfWaves,WakesandOffshoreWind”ANEMOS
"DevelopmentofaNextGenerationWindResourceForecastingSystemfortheLarge-ScaleIntegrationofOnshoreandOffshoreWindFarms"ANEMOS.PLUS
“AdvancedToolsfortheManagementofElectricityGridswithLarge-ScaleWindGeneration”SAFEWIND
“Multi-scaledataassimilation,advancedwindmodellingandforecastingwithemphasistoextremeweathersituationsforasafelarge-scalewindpowerintegration”
PUBLICATIONS
[1]Martí,I.,Nielsen,T.S.,Madsen,H.,etal.Predictionmodelsincomplexterrain.ProceedingsoftheEuropeanWindEnergyConference.Copenhagen,July2023.[2]Martí,I.,Usaola,J.etal.Windpowerpredictionincomplexterrain.LocalPredandSipreólico.ProceedingsoftheEuropeanWindEnergyconference,June2023.[3]Martí,I.etal.Windpowerpredictionincomplexterrain:fromthesynopticscaletothelocalscale.“Thescienceofmakingtorquefromwind”.Delft.TheNetherlands,2023.[4]M.Gastón,L.Frías,M.J.SanIsidro,I.Martí.Exploringthelimitsofwindfarmgroupingforpredictionerrorcompensation.EWEC2023.[5]
L.Frías,M.Gastón,I.Martí.Anewmodelforwindenergyforecastingfocusedintheintra-dailymarkets.EWEC2023.[6]L.Frías,E.Pascal,U.Irigoyen,E.Cantero,Y.Loureiro,S.Lozano,P.M.Fernandes,I.Martí.SupportVectorMachinesinthewindenergyframework.Anewmodelforwindenergyforecasting.EWEC2023.ThedailySKIRONforecastscanbevisitedat
.CloudCover,Snow,Wind,Temperature,Precipitation,Localforecaststomaincities,etc...Skironreal-timemeteorologicalproducts:
Anomalies:Windand/orEnergyDensity:Anomaliesmapswithan1kmx1kmresolution.ItisnecessarytopossessasimulateddatabasewithSKIRONtobeabletocalculatethesemaps.It'spossibletocalculatetheanomaliesforeverydesiredperiod(daily,weekly,monthly,seasonally,yearly,….etc)Thereferenceperiodusedtoobtaintheseproductcanalsobechangedaccordinglytotheclient’sneeds.There'salsothepossibilitytogeneratevariabilitymapstohelpidentifyunstable(regardingwindresource)regions.TheyaredeliveredinGISformatwithseverallayersattached(Anomaly;topography,windfarmlocations,etc)Skironreal-timemeteorologicalproducts:FigureInterpretation:AttheEbroValley,theFebruarywindvelocitywas20%lessthanthelast6yearsmean.Typesofanomalies:WindandEnergyDensityMonthlyYearlySeasonly...Advantage!!:Allowstoindentifyinaveryintuitiveway,ifagivenregionhadregistedabove/underaveragewinds.→Easytoidentifyapossiblecauseforover/underproductionofawindfarm.Skironreal-timemeteorologicalproducts-AnomaliesTheuseofmesoescalemodelsforwindresourceassessmentisarecentactivity.Thestandardmethodologymayvary,accordinglywiththemodeluser,butthegoalisthesame:TotakeadvantageoftheNWPmodelscapacitytopredictwind.Methodology??-Themaingoalistodeterminethewindclimatologyinsteadofthereal-timeprediction.Insteadofpredictinthefuture,longperiods(years)oftimearesimulatedusingastoredinputdataarchive(GFS,Reanalysis).SKIRON:WindresourceAssessmentThemethodologiesusedintheseclimaticsimulationscanbeverydifferent,butsomeaspectsarecommon:1. InitialDataThemodelusedtocalculatethewindmapneedsinitialinputdataandinitialboundaryconditions.Therearefewavailablesourcesofthatinformationtosuchlongperiods:Reanalysis(NCAR/NCEP,ECMWF,JRA)orthestoredoutputsfromtheGFSandECMWFmodels.2. ClimaticSimulation.Itisnecessarytoobtainalongtermrepresentativesimulationoftheareainquestion.Theonlyavailableoptionsaretryingtosimulatethelargestavailableperiod:5,10,15ormoreyears,orsimulateaclimatologicalrepresentativeyeartotheregionofinterest.SKIRON:WindresourceAssessmentExamplesofmethodologiesusedtoobtainarepresentativeWindAtlas.SKIRON:WindresourceAssessmentCENERtestcase:SKIRON:WindresourceAssessmentInCenercase,24weatherstationsinNavarra,thatfullfillalltherequirements,havebeencarefullyselectedandtheresultshavebeenanalyzedtakingintoconsiderationthecomplexityoftheterrain,meanwindvelocityandstation.MAE,RMSEandBiaswerecalculated:Ifwelookonlytothesimulationswithreanalysisdata,itcanbestatedthatthelowestMAEisachievedwiththe0,03ox0,03oresolution,butthelowestBiasisachievedinthe0,1ox0,1oresolution.Ifweanalyzeallthesimulationsmade,it'seasytoseethattheoptimalconfigurationtotheSKIRONmodelisGFSasinputdataandanhorizontalresolutionof0,05ox0,05o.SKIRON:WindresourceAssessment“Climatic”Simulations:HorizontalResolution:0.05ox0.05o(~5kmx5km)?VerticalResolutions:50Etaverticallevels.NonestingTemporalresolution:outputfrequency=1h(48hhorizon)Inputs:GFS12UTC,SST,SnowcoverandSnowdepthAvailableperiodatCENER(fromJune2023untilnow–8years)CENERcomputacionalResources:618processors640GBRAMUnixOperatingSystemSKIRON:WindresourceAssessmentMEASUREDSKIRON0.05ox0.05oGFS1ox1oHOURLYWINDVALUESVALIDATIONFILTERINGWINDMAPHOURLYTIMESERIESGISWEBSERVICESKIRON:WindresourceAssessment01/01/2023:…………..48hourlymaps31/12/2023:…………..48hourlymaps......(Firstrun)?(Lastrun)?(1274runs)?Toruneachyear,182simulations,eachonewithan48hourspredictionhorizonarelaunched.Sothenumberofsimulationsneededtoruneachcaseare:
NoYearsx182=NoSimulationsSKIRON:WindresourceAssessment++++++++7(y)x365(d)x24(h)=61320hourlywindmapsTheresultfromallthesimulationsisonewindmapforeveryhourinthechosenperiod.ADVANTAGE!!:Thepossibilitytovalidatethewindmapwithrealmeasures.SKIRON:WindresourceAssessmentInTunisia,CENERusedthemeasurementsfrom17weatherstations,withanemometersinstalledat20mand40m.ThatallowedustoperformanexhaustivevalidationofCENERmethodologytoobtainwindmapsandvirtualseries.TUNISIAWINDMAPSKIRON:WindresourceAssessment–TunisiaIntheGreatLakesWindMap,CENERusedwindmeasuresfrom50weatherstations,mostofthemhadanemometersatan10mheight.Thiswasagoodtestcasetovalidatethesimulatedwind,bothonshoreandoffshore.SKIRON:WindresourceAssessment–GreatLakesWiththegoalofvalidatetheoffshorevirtualseriesgeneratedwithSKIRON,awindmapfortheNorthSeawasgenerated:
FINOValidation:6months:January-June2023Datacoverage:90%SKIRON:Resolution:0.05o,50verticallevels,1hrForecastmaximumhorizon:48hrMeasures:Windat:33,40,50,70,80,90mTemperatureat:30,40,50,70,100mRHat:33,50,90mTowereffectcorrectedinthewindvalues.SKIRON:WindresourceAssessmentOffshore–FinoExcellentresultsbothinVelocityanddirectionSKIRON:WindresourceAssessmentOffshore–FinoSonicsCupsFino154.014oN6.5905oESKIRON:WindresourceAssessmentOffshore–FinoSKIRON:WindresourceAssessmentOffshore–FinoMeanWindMapfromthedesiredregionwithafinalhorizontalresolutionof1kmx1km(Inversedistanceweightedinterpolation);Themeanwindcouldbecalculatedathubheight;Windrosesandprobabilitydistributioninrepresentativepointsinjpgformat.DeliveredinGISformatwithseverallayersofinformation(MeanWind,Topography,Protectedareas;Electricgrid,etc)POLANDWINDMAPTUNISIAWINDMAPNORTHSEAWINDMAPEASTEUROPEWINDMAPSKIRON:WindresourceAssessmentOffshore–DerivedproductsGISFormatcompatible KMZFormat–GoogleEarth SKIRON:WindresourceAssessmentOffshore–DerivedproductsEnergyDensityMapsMeanEnergyMapsfromthedesiredregionatan1kmx1kmhorizontalresolution.Theenergyiscalculated,pointbypoint,toeveryhourusingthepressureandtemperaturesimulatedwithSKIRON.Thismeansthattheairdensityusedit'salsocalculatedandnotaveragedtotheentiredomain.Theenergydensityobtainedisrepresentativeofthesimulatedperiod.It'scalculatedatthehubheight.It'sdeliveredinGISformat(Energydensity+standardlayers)Weibullparametersmaps,Individualmapsfortheparameters(A,k)totheentiresimulatedregionatafinalhorizontalresolutionof1kmx1km.AlsodeliveredinGISformat,withthestandardinformation.SKIRON:WindresourceAssessmentOffshore–DerivedproductsCENERsimulateddomains:Wind:IberianPeninsula;Poland;Romania;GreatLakes;Mexico;CentralAmerica,Chile;Peru;Fino,Brazil(NERegion)SolarRadiation:Australia;NorthAfrica;UnitedEmiratesCENERSimulatedDomains(Wind/SolarRadiationMaps)Withthegoaltosuppressthelackofmeasurementsinsomelocations,CENERhasdevelopedandvalidatedamethodologycapableofgeneratingvirtualwindseries(velocityanddirection),energydensity,temperature,pressure,etc,usingthemesoescalemodelSKIRON.Inordertoobtainthewindseriesatadesiredlocation,hourlywindoutputsfromSKIRONareusedasinputtothemicroscalemodelWasPandthencorrectedbytheAdfactorgivenbytheWasP/CFDsimulation.WindresourceAssessment–DownscalingandVirtualWindSeriesAdvantage!!:AllowstodetectthelocaleffectscausedbythelocaltopographythatSKIRONcan'tresolve.SKIRON0.05ox0.05oHOURLYWINDVALUESWAsPSRTMAdFACTORHOURLYTIMESERIESHIGHRESOLUTIONWUNDMAPSWindresourceAssessment–DownscalingandVirtualWindSeriesHourlywindoutputsfromSKIRONareusedasinputtothem
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆山東省廣饒一中重點(diǎn)中學(xué)高考英語全真模擬密押卷含解析
- 14.1《故都的秋》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊(cè)-2
- 2025屆吉林省延邊州高考?jí)狠S卷語文試卷含解析
- 河北省巨鹿縣第二中學(xué)2025屆高考適應(yīng)性考試數(shù)學(xué)試卷含解析
- 甘肅省定西市通渭縣2025屆高三下學(xué)期聯(lián)考英語試題含解析
- 《信息技術(shù)基礎(chǔ)所有》課件
- 2025屆四川省宜賓市第三中學(xué)高考仿真卷語文試題含解析
- 專題01 單項(xiàng)選擇(單詞的讀音)50題(原卷版)-2024-2025學(xué)年七年級(jí)英語上學(xué)期期末名校真題進(jìn)階練(深圳專用)
- 2025屆河南省鄭州二中高三六校第一次聯(lián)考英語試卷含解析
- 2025屆新疆維吾爾自治區(qū)普通高中高三壓軸卷英語試卷含解析
- 整理版鉸接式護(hù)坡施工指南
- 《光輝歲月》教案
- 英文審稿意見匯總
- 兒童早期口腔健康管理-948-2020年華醫(yī)網(wǎng)繼續(xù)教育答案
- 鋼卷尺檢定證書
- 新人教版五年級(jí)數(shù)學(xué)《位置》教學(xué)設(shè)計(jì)(第1課時(shí)) (2)
- 新電氣符號(hào)國標(biāo)
- 綜采隊(duì)班組民主會(huì)議記錄
- 三角函數(shù)及解三角形在高考中的地位和應(yīng)對(duì)策略
- 向下管理高爾夫?qū)崙?zhàn)
- 交通組織優(yōu)化論
評(píng)論
0/150
提交評(píng)論