西班牙可再生能源中心風(fēng)功率預(yù)測(cè)_第1頁
西班牙可再生能源中心風(fēng)功率預(yù)測(cè)_第2頁
西班牙可再生能源中心風(fēng)功率預(yù)測(cè)_第3頁
西班牙可再生能源中心風(fēng)功率預(yù)測(cè)_第4頁
西班牙可再生能源中心風(fēng)功率預(yù)測(cè)_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PedroCorreia:LauraFrías:IvánMoya:WindResourceAssessmentandPrediction-EPRTheNumericalWeatherPredictionmodels(NWP),havebeentraditionallyusedtopredicttherealstateofearth'satmosphere.Theinitialstateoftheatmosphere(ANALYSIS)isreproducedusingmeasurementsfromsatellites,weatherstations,etc,andconvertedtoaregulargridthatcanbeusedtofeedthemesoescalemodel.Byresolvingtheprimitiveequationswiththatinputdata,theNWPmodelscanpredicttheweatherinthefuture.There'sdifferenttypesofatmosphericmodels:Global:GlobalForecastingsystem(GFS)fromNcep/NCARandtheECMWFGlobalmodel,...Regional:Skiron;EtaModel;WRF;MM5,Hirlam;Aladin,...NWP:MesoescaleModels–ShortDescriptionMesoescalemodelthatusesthebaseoftheETAmodel.RequiresanUNIXOperatingSystem;Itisabletousetheweatherinputdatafrom;GFS(GlobalForecastingSystem);NCEP/NCARReanalysis1;ECMWF(GlobalModel)?CENERworkswithSKIRONsinceOctober,2023.CENERworkswithSKIRONsinceOctober,2023.Itwasfirstconfiguredtorunreal-timeforecasts,allowingCENERtoobtaindailyweatherpredictions.Fromsometimenow,themodelisalsobeenusedtowindanddirectsolarradiationresourceassessmentinanwiderangeoflocationsthroughouttheglobe.Togeneratewind/solarradiationmaps,it'sdesirabletorunSKIRONaslongaspossible(morethan5years),inordertoobtainthelongtermbehaviorofthedifferentmeteorologicalvariables,suchaspressure,windvelocityanddirection(atseveralheightsabovegroundlevel),directsolarradiation,temperature,etc.NWP:MesoescaleModels–SKIRON

SKIRON:Real-timepredictionsIt'sexecutedin16processorswithanhorizonof180ph->5h30minHorizontalResolution:0.1ox0.1o(~10kmx10km)->341x281ptsVerticalResolution:38Etaverticallevels.NonestingTemporalresolution:outputfrequency=1h(180dailyfiles)Dailydownloadandstorageof:GFS12UTC,SST,SnowcoverandSnowdepthBackupsystem:Thesamemodelconfiguration,indifferentmachineswhicharelocatedinanotherarea.Thisallowsustoguaranteetheclientsforecastsincaseofafailureinthemainsystem(powerfailure,computermalfunction,networkproblems,etc).WindForecastandWindEnergyproductionusingSKIRON

SKIRON:Real-timeReal-timedomainfromOctober2023untilNovember2023.DomainsinceNovember2023untilnow.WindForecastandWindEnergyproductionusingSKIRON

Intheelectricitygridatanymomentbalancemustbemaintainedbetweenelectricityconsumptionandgeneration-otherwisedisturbancesinpowerqualityorsupplymayoccur.

Windgenerationisadirectfunctionofwindspeedand,incontrasttoconventionalgenerationsystems,isnoteasilydispatchable.Fluctuationsofwindgenerationthusreceiveagreatamountofattention.

Managingthevariabilityofwindgenerationisthekeyaspectassociatedtotheoptimalintegrationofthatrenewableenergyintoelectricitygrids.Reasonforwindpowerforecasts

Statisticalpredictionmethodsarebasedononeorseveralmodels(linearandnon-linear)thatestablishtherelationbetweenhistoricalvaluesofpower,aswellashistoricalandforecastvaluesofmeteorologicalvariables,andwindpowermeasurements.

Modelparametersareestimatedfromasetofpastavailabledata,andtheyareregularlyupdatedduringonlineoperationbyaccountingforanynewlyavailableinformation(i.e.meteorologicalforecastsandpowermeasurements).StatisticalapproachtowindpowerFORECASTSFORTHEDAILYMARKET.LocalPredisoperationalsince2023andhasbeencontinuouslydevelopedsincethen.Reliabilityandaccuracyarethemaincharacteristicsofthesystem.

Reliabilityisbasedontheredundancyof:Hardware.Inputdata.Processes.Accuracyisobtainedthroughthecombinationofforecastswithdifferentinformation:“multi-modelensemble”.SupportVectorMachinetechnology,PCAalgorithms,dataqualitycontrol.Forecastsforoffshorewindfarms:Windfarmenergyproduction.Waves(WAM4highresolutionwaveforecasts).reducedvisibility.Operationalsince2001DESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMGFSSKIRONECMWFPCAMOSENSEMBLEMOS2DELIVERYFTPCENERFTPCLIENTFTPAGENTSVMZAMUDIOCENERMultimodelensembleDESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMCombinationAlgorithmDESCRIPTIONOFLOCALPREDFORECASTINGSYSTEMLocalPredincludesacombinationalgorithmdevelopedincollaborationwithDTU-IMM.

Thelevelofimprovementdependsontheerroroftheindividualforecastsandonthelevelofcorrelationbetweenthem.

Thecombinationisabletoimprovethebestindividualforecast.windfarmsclusteringanalysisEvolutionerrorindexvsthenumberofagreggatedwindfarmswindfarmsclusteringanalysisEconomicimpactobtainedbytheaggregationofwindfarmsFORECASTSFORTHEINTRADAYMARKETSIntra-dailymarketprocess.Focusonveryshort-termforecasts

TheactualSpanishelectricalmarket,allowsustocorrectthewindenergyforecastingpresentedinthedailymarketbymeansoftheintradailymarket.Thismarketisorganizedintosixsessionsandagentsthathavepreviouslyparticipatedinthedailymarketcanpresentnewprogramofproduction.

Thenewpredictionsmustbepresentedbetweentheopeningandclosinghoursofthesession.

Thus,ineachintradailysession,wecorrectamaximumoffivepredictions,andtakingintoaccounttheclosinghourofthesession,wecanusefromfourthtoeighthstepahead.Thereforetheimportanceoftheshorttimeforecastandsotheneedofashorttimemodelfallshere.Intra-dailymarketprocess.Focusonveryshort-termforecasts

Anewmodelforshort-termpredictionhasbeendevelopedtakingintoaccounttheSpanishmarketrules.Thismodelisfocusedinshortforecastinghorizons.First,itusesonlinepowerproductiondataofthewindfarmstobuilddifferenttimeseriesmodels(Box-JenkinsmethodologyandaversionofHoltWintersAlgorithm).Ontheotherhand,itutilizesexistingforecastsforthedailymarketproducedbyCENER’sLocalPredmodelbasedonmesoscaleNWPandMOScorrections.Finallyitimplementsacombinationalgorithmthatofferstheoptimalforecastforeachhorizon.MethodologyoftheshorttimeforecastingmodelofCENERResultsobtainedWepresenttheresultsobtainedfromtheCENERshorttimemodelappliedonamediumwindfarmfromSpainbetweenFebruaryandDecember.Wepresenttheimprovementofthenewmodelagainstthepersistenceasshorttimepredictionandagainstthedailymarketforecasting.EUROPEANPROJECTSR+DEuropeanprojects(VIandVIIFrameworkProgram):UPWIND

“Findingdesignsolutionsforverylargewindturbines”POW’WOW

“PredictionOfWaves,WakesandOffshoreWind”ANEMOS

"DevelopmentofaNextGenerationWindResourceForecastingSystemfortheLarge-ScaleIntegrationofOnshoreandOffshoreWindFarms"ANEMOS.PLUS

“AdvancedToolsfortheManagementofElectricityGridswithLarge-ScaleWindGeneration”SAFEWIND

“Multi-scaledataassimilation,advancedwindmodellingandforecastingwithemphasistoextremeweathersituationsforasafelarge-scalewindpowerintegration”

PUBLICATIONS

[1]Martí,I.,Nielsen,T.S.,Madsen,H.,etal.Predictionmodelsincomplexterrain.ProceedingsoftheEuropeanWindEnergyConference.Copenhagen,July2023.[2]Martí,I.,Usaola,J.etal.Windpowerpredictionincomplexterrain.LocalPredandSipreólico.ProceedingsoftheEuropeanWindEnergyconference,June2023.[3]Martí,I.etal.Windpowerpredictionincomplexterrain:fromthesynopticscaletothelocalscale.“Thescienceofmakingtorquefromwind”.Delft.TheNetherlands,2023.[4]M.Gastón,L.Frías,M.J.SanIsidro,I.Martí.Exploringthelimitsofwindfarmgroupingforpredictionerrorcompensation.EWEC2023.[5]

L.Frías,M.Gastón,I.Martí.Anewmodelforwindenergyforecastingfocusedintheintra-dailymarkets.EWEC2023.[6]L.Frías,E.Pascal,U.Irigoyen,E.Cantero,Y.Loureiro,S.Lozano,P.M.Fernandes,I.Martí.SupportVectorMachinesinthewindenergyframework.Anewmodelforwindenergyforecasting.EWEC2023.ThedailySKIRONforecastscanbevisitedat

.CloudCover,Snow,Wind,Temperature,Precipitation,Localforecaststomaincities,etc...Skironreal-timemeteorologicalproducts:

Anomalies:Windand/orEnergyDensity:Anomaliesmapswithan1kmx1kmresolution.ItisnecessarytopossessasimulateddatabasewithSKIRONtobeabletocalculatethesemaps.It'spossibletocalculatetheanomaliesforeverydesiredperiod(daily,weekly,monthly,seasonally,yearly,….etc)Thereferenceperiodusedtoobtaintheseproductcanalsobechangedaccordinglytotheclient’sneeds.There'salsothepossibilitytogeneratevariabilitymapstohelpidentifyunstable(regardingwindresource)regions.TheyaredeliveredinGISformatwithseverallayersattached(Anomaly;topography,windfarmlocations,etc)Skironreal-timemeteorologicalproducts:FigureInterpretation:AttheEbroValley,theFebruarywindvelocitywas20%lessthanthelast6yearsmean.Typesofanomalies:WindandEnergyDensityMonthlyYearlySeasonly...Advantage!!:Allowstoindentifyinaveryintuitiveway,ifagivenregionhadregistedabove/underaveragewinds.→Easytoidentifyapossiblecauseforover/underproductionofawindfarm.Skironreal-timemeteorologicalproducts-AnomaliesTheuseofmesoescalemodelsforwindresourceassessmentisarecentactivity.Thestandardmethodologymayvary,accordinglywiththemodeluser,butthegoalisthesame:TotakeadvantageoftheNWPmodelscapacitytopredictwind.Methodology??-Themaingoalistodeterminethewindclimatologyinsteadofthereal-timeprediction.Insteadofpredictinthefuture,longperiods(years)oftimearesimulatedusingastoredinputdataarchive(GFS,Reanalysis).SKIRON:WindresourceAssessmentThemethodologiesusedintheseclimaticsimulationscanbeverydifferent,butsomeaspectsarecommon:1. InitialDataThemodelusedtocalculatethewindmapneedsinitialinputdataandinitialboundaryconditions.Therearefewavailablesourcesofthatinformationtosuchlongperiods:Reanalysis(NCAR/NCEP,ECMWF,JRA)orthestoredoutputsfromtheGFSandECMWFmodels.2. ClimaticSimulation.Itisnecessarytoobtainalongtermrepresentativesimulationoftheareainquestion.Theonlyavailableoptionsaretryingtosimulatethelargestavailableperiod:5,10,15ormoreyears,orsimulateaclimatologicalrepresentativeyeartotheregionofinterest.SKIRON:WindresourceAssessmentExamplesofmethodologiesusedtoobtainarepresentativeWindAtlas.SKIRON:WindresourceAssessmentCENERtestcase:SKIRON:WindresourceAssessmentInCenercase,24weatherstationsinNavarra,thatfullfillalltherequirements,havebeencarefullyselectedandtheresultshavebeenanalyzedtakingintoconsiderationthecomplexityoftheterrain,meanwindvelocityandstation.MAE,RMSEandBiaswerecalculated:Ifwelookonlytothesimulationswithreanalysisdata,itcanbestatedthatthelowestMAEisachievedwiththe0,03ox0,03oresolution,butthelowestBiasisachievedinthe0,1ox0,1oresolution.Ifweanalyzeallthesimulationsmade,it'seasytoseethattheoptimalconfigurationtotheSKIRONmodelisGFSasinputdataandanhorizontalresolutionof0,05ox0,05o.SKIRON:WindresourceAssessment“Climatic”Simulations:HorizontalResolution:0.05ox0.05o(~5kmx5km)?VerticalResolutions:50Etaverticallevels.NonestingTemporalresolution:outputfrequency=1h(48hhorizon)Inputs:GFS12UTC,SST,SnowcoverandSnowdepthAvailableperiodatCENER(fromJune2023untilnow–8years)CENERcomputacionalResources:618processors640GBRAMUnixOperatingSystemSKIRON:WindresourceAssessmentMEASUREDSKIRON0.05ox0.05oGFS1ox1oHOURLYWINDVALUESVALIDATIONFILTERINGWINDMAPHOURLYTIMESERIESGISWEBSERVICESKIRON:WindresourceAssessment01/01/2023:…………..48hourlymaps31/12/2023:…………..48hourlymaps......(Firstrun)?(Lastrun)?(1274runs)?Toruneachyear,182simulations,eachonewithan48hourspredictionhorizonarelaunched.Sothenumberofsimulationsneededtoruneachcaseare:

NoYearsx182=NoSimulationsSKIRON:WindresourceAssessment++++++++7(y)x365(d)x24(h)=61320hourlywindmapsTheresultfromallthesimulationsisonewindmapforeveryhourinthechosenperiod.ADVANTAGE!!:Thepossibilitytovalidatethewindmapwithrealmeasures.SKIRON:WindresourceAssessmentInTunisia,CENERusedthemeasurementsfrom17weatherstations,withanemometersinstalledat20mand40m.ThatallowedustoperformanexhaustivevalidationofCENERmethodologytoobtainwindmapsandvirtualseries.TUNISIAWINDMAPSKIRON:WindresourceAssessment–TunisiaIntheGreatLakesWindMap,CENERusedwindmeasuresfrom50weatherstations,mostofthemhadanemometersatan10mheight.Thiswasagoodtestcasetovalidatethesimulatedwind,bothonshoreandoffshore.SKIRON:WindresourceAssessment–GreatLakesWiththegoalofvalidatetheoffshorevirtualseriesgeneratedwithSKIRON,awindmapfortheNorthSeawasgenerated:

FINOValidation:6months:January-June2023Datacoverage:90%SKIRON:Resolution:0.05o,50verticallevels,1hrForecastmaximumhorizon:48hrMeasures:Windat:33,40,50,70,80,90mTemperatureat:30,40,50,70,100mRHat:33,50,90mTowereffectcorrectedinthewindvalues.SKIRON:WindresourceAssessmentOffshore–FinoExcellentresultsbothinVelocityanddirectionSKIRON:WindresourceAssessmentOffshore–FinoSonicsCupsFino154.014oN6.5905oESKIRON:WindresourceAssessmentOffshore–FinoSKIRON:WindresourceAssessmentOffshore–FinoMeanWindMapfromthedesiredregionwithafinalhorizontalresolutionof1kmx1km(Inversedistanceweightedinterpolation);Themeanwindcouldbecalculatedathubheight;Windrosesandprobabilitydistributioninrepresentativepointsinjpgformat.DeliveredinGISformatwithseverallayersofinformation(MeanWind,Topography,Protectedareas;Electricgrid,etc)POLANDWINDMAPTUNISIAWINDMAPNORTHSEAWINDMAPEASTEUROPEWINDMAPSKIRON:WindresourceAssessmentOffshore–DerivedproductsGISFormatcompatible KMZFormat–GoogleEarth SKIRON:WindresourceAssessmentOffshore–DerivedproductsEnergyDensityMapsMeanEnergyMapsfromthedesiredregionatan1kmx1kmhorizontalresolution.Theenergyiscalculated,pointbypoint,toeveryhourusingthepressureandtemperaturesimulatedwithSKIRON.Thismeansthattheairdensityusedit'salsocalculatedandnotaveragedtotheentiredomain.Theenergydensityobtainedisrepresentativeofthesimulatedperiod.It'scalculatedatthehubheight.It'sdeliveredinGISformat(Energydensity+standardlayers)Weibullparametersmaps,Individualmapsfortheparameters(A,k)totheentiresimulatedregionatafinalhorizontalresolutionof1kmx1km.AlsodeliveredinGISformat,withthestandardinformation.SKIRON:WindresourceAssessmentOffshore–DerivedproductsCENERsimulateddomains:Wind:IberianPeninsula;Poland;Romania;GreatLakes;Mexico;CentralAmerica,Chile;Peru;Fino,Brazil(NERegion)SolarRadiation:Australia;NorthAfrica;UnitedEmiratesCENERSimulatedDomains(Wind/SolarRadiationMaps)Withthegoaltosuppressthelackofmeasurementsinsomelocations,CENERhasdevelopedandvalidatedamethodologycapableofgeneratingvirtualwindseries(velocityanddirection),energydensity,temperature,pressure,etc,usingthemesoescalemodelSKIRON.Inordertoobtainthewindseriesatadesiredlocation,hourlywindoutputsfromSKIRONareusedasinputtothemicroscalemodelWasPandthencorrectedbytheAdfactorgivenbytheWasP/CFDsimulation.WindresourceAssessment–DownscalingandVirtualWindSeriesAdvantage!!:AllowstodetectthelocaleffectscausedbythelocaltopographythatSKIRONcan'tresolve.SKIRON0.05ox0.05oHOURLYWINDVALUESWAsPSRTMAdFACTORHOURLYTIMESERIESHIGHRESOLUTIONWUNDMAPSWindresourceAssessment–DownscalingandVirtualWindSeriesHourlywindoutputsfromSKIRONareusedasinputtothem

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論