遼寧省丹東市重點中學2022年中考押題數(shù)學預測卷含解析_第1頁
遼寧省丹東市重點中學2022年中考押題數(shù)學預測卷含解析_第2頁
遼寧省丹東市重點中學2022年中考押題數(shù)學預測卷含解析_第3頁
遼寧省丹東市重點中學2022年中考押題數(shù)學預測卷含解析_第4頁
遼寧省丹東市重點中學2022年中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

遼寧省丹東市重點中學2022年中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.2.一次數(shù)學測試后,隨機抽取九年級某班5名學生的成績?nèi)缦拢?1,78,1,85,1.關于這組數(shù)據(jù)說法錯誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是913.某中學籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數(shù)1542關于這12名隊員的年齡,下列說法錯誤的是()A.眾數(shù)是14歲 B.極差是3歲 C.中位數(shù)是14.5歲 D.平均數(shù)是14.8歲4.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.5.如圖的平面圖形繞直線l旋轉(zhuǎn)一周,可以得到的立體圖形是()A. B. C. D.6.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.7.如圖1是2019年4月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關系的式子中不正確的是()A.a(chǎn)﹣d=b﹣c B.a(chǎn)+c+2=b+d C.a(chǎn)+b+14=c+d D.a(chǎn)+d=b+c8.如圖,已知函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>09.點A(-2,5)關于原點對稱的點的坐標是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)10.如圖,將繞直角頂點順時針旋轉(zhuǎn),得到,連接,若,則的度數(shù)是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若a+b=3,ab=2,則a2+b2=_____.12.化簡的結(jié)果是_______________.13.如圖,正方形ABCD邊長為3,以直線AB為軸,將正方形旋轉(zhuǎn)一周.所得圓柱的主視圖(正視圖)的周長是_____.14.如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,∠CAB=60°,弦AD平分∠CAB,若AD=6,則AC=_____.15.若兩個關于x,y的二元一次方程組與有相同的解,則mn的值為_____.16.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.三、解答題(共8題,共72分)17.(8分)北京時間2019年3月10日0時28分,我國在西昌衛(wèi)星發(fā)射中心用長征三號乙運載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進入預定軌道.如圖,火星從地面處發(fā)射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求發(fā)射臺與雷達站之間的距離;(Ⅱ)求這枚火箭從到的平均速度是多少(結(jié)果精確到0.01)?18.(8分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201819.(8分)如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)20.(8分)如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉(zhuǎn)得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點D順時針旋轉(zhuǎn)90°得到,求線段DF的長;(3)若線段DE是CD繞點D旋轉(zhuǎn)90°得到,且點E恰好在拋物線上,請求出點E的坐標.21.(8分)“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:請結(jié)合圖表完成下列各題:(1)①表中a的值為,中位數(shù)在第組;②頻數(shù)分布直方圖補充完整;(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?(3)第5組10名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.組別成績x分頻數(shù)(人數(shù))第1組50≤x<606第2組60≤x<708第3組70≤x<8014第4組80≤x<90a第5組90≤x<1001022.(10分)如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.求證:四邊形OCED是矩形;若CE=1,DE=2,ABCD的面積是.23.(12分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大?。唬á颍┤簟螪=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.24.如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題解析:設現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組2、D【解析】

試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數(shù)②中位數(shù)③平均數(shù)④極差.3、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數(shù)是:14.5,故選項C正確,不合題意;平均數(shù)是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關定義是解題關鍵.4、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.5、B【解析】

根據(jù)面動成體以及長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉(zhuǎn)得到的立體圖形是解題關鍵.6、D【解析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關,因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.7、A【解析】

觀察日歷中的數(shù)據(jù),用含a的代數(shù)式表示出b,c,d的值,再將其逐一代入四個選項中,即可得出結(jié)論.【詳解】解:依題意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,選項A符合題意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,選項B不符合題意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,選項C不符合題意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,選項D不符合題意.故選:A.【點睛】考查了列代數(shù)式,利用含a的代數(shù)式表示出b,c,d是解題的關鍵.8、C【解析】

首先求出P點坐標,進而利用函數(shù)圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,解題的關鍵是正確得出P點坐標.9、B【解析】

根據(jù)平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).【詳解】根據(jù)中心對稱的性質(zhì),得點P(?2,5)關于原點對稱點的點的坐標是(2,?5).故選:B.【點睛】考查關于原點對稱的點的坐標特征,平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).10、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠A′B′C,最后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠B=∠A′B′C.【詳解】解:∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)a2+b2=(a+b)2-2ab,代入計算即可.【詳解】∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=1.故答案為:1.【點睛】本題考查對完全平方公式的變形應用能力,要熟記有關完全平方的幾個變形公式.12、【解析】

先將分式進行通分,即可進行運算.【詳解】=-=【點睛】此題主要考查分式的加減,解題的關鍵是先將它們通分.13、1.【解析】分析:所得圓柱的主視圖是一個矩形,矩形的寬是3,長是2.詳解:矩形的周長=3+3+2+2=1.點睛:本題比較容易,考查三視圖和學生的空間想象能力以及計算矩形的周長.14、2【解析】

首先連接BD,由AB是⊙O的直徑,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度數(shù),又由AD=6,求得AB的長,繼而求得答案.【詳解】解:連接BD,∵AB是⊙O的直徑,∴∠C=∠D=90°,∵∠BAC=60°,弦AD平分∠BAC,∴∠BAD=∠BAC=30°,∴在Rt△ABD中,AB==4,∴在Rt△ABC中,AC=AB?cos60°=4×=2.故答案為2.15、1【解析】

聯(lián)立不含m、n的方程求出x與y的值,代入求出m、n的值,即可求出所求式子的值.【詳解】聯(lián)立得:,①×2+②,得:10x=20,解得:x=2,將x=2代入①,得:1-y=1,解得:y=0,則,將x=2、y=0代入,得:,解得:,則mn=1,故答案為1.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程都成立的未知數(shù)的值.16、2【解析】

解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.三、解答題(共8題,共72分)17、(Ⅰ)發(fā)射臺與雷達站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.【解析】

(Ⅰ)在Rt△ACD中,根據(jù)銳角三角函數(shù)的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進而可得AB的長,即可得答案.【詳解】(Ⅰ)在中,,≈0.74,∴.答:發(fā)射臺與雷達站之間的距離約為.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:這枚火箭從到的平均速度大約是.【點睛】本題考查解直角三角形的應用,熟練掌握銳角三角函數(shù)的定義是解題關鍵.18、-1【解析】

原式利用乘方的意義,特殊角的三角函數(shù)值,零指數(shù)冪法則計算即可求出值.【詳解】解:原式=﹣4+1+1+1=﹣1.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.19、3+3.5【解析】

延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應用﹣仰角俯角問題;2、解直角三角形的應用﹣坡度坡角問題20、(1)拋物線解析式為y=﹣;(2)DF=3;(3)點E的坐標為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【解析】

(1)將點A、C坐標代入拋物線解析式求解可得;(2)證△COD≌△DHE得DH=OC,由CF⊥FH知四邊形OHFC是矩形,據(jù)此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)設點D的坐標為(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD繞點D順時針旋轉(zhuǎn)和逆時針旋轉(zhuǎn)兩種情況,表示出點E的坐標,代入拋物線求得t的值,從而得出答案.【詳解】(1)∵拋物線y=﹣+bx+c交x軸于點A(﹣2,0)、C(0,3),∴,解得:,∴拋物線解析式為y=﹣+x+3;(2)如圖1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.又∵DC=DE,∴△COD≌△DHE,∴DH=OC.又∵CF⊥FH,∴四邊形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如圖2,設點D的坐標為(t,0).∵點E恰好在拋物線上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分兩種情況討論:①當CD繞點D順時針旋轉(zhuǎn)時,點E的坐標為(t+3,t),代入拋物線y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以點E的坐標E1(4,1)或E2(﹣,﹣);②當CD繞點D逆時針旋轉(zhuǎn)時,點E的坐標為(t﹣3,﹣t),代入拋物線y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故點E的坐標E3(,﹣)或E4(,﹣);綜上所述:點E的坐標為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、全等三角形的判定與性質(zhì)、矩形的判定與性質(zhì)及分類討論思想的運用.21、(1)①12,3.②詳見解析.(2).【解析】分析:(1)①根據(jù)題意和表中的數(shù)據(jù)可以求得a的值;②由表格中的數(shù)據(jù)可以將頻數(shù)分布表補充完整;(2)根據(jù)表格中的數(shù)據(jù)和測試成績不低于80分為優(yōu)秀,可以求得優(yōu)秀率;(3)根據(jù)題意可以求得所有的可能性,從而可以得到小明與小強兩名男同學能分在同一組的概率.詳解:(1)①a=50﹣(6+8+14+10)=12,中位數(shù)為第25、26個數(shù)的平均數(shù),而第25、26個數(shù)均落在第3組內(nèi),所以中位數(shù)落在第3組,故答案為12,3;②如圖,(2)×100%=44%,答:本次測試的優(yōu)秀率是44%;(3)設小明和小強分別為A、B,另外兩名學生為:C、D,則所有的可能性為:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小強分在一起的概率為:.點睛:本題考查列舉法求概率、頻數(shù)分布表、頻數(shù)分布直方圖、中位數(shù),解題的關鍵是明確題意,找出所求問題需要的條件,可以將所有的可能性都寫出來,求出相應的概率.22、(1)證明見解析;(2)1.【解析】【分析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內(nèi)角為90度即可;(2)由菱形的對角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×1×2=1,故答案為1.【點睛】本題考查了矩形的判定與性質(zhì),菱形的性質(zhì),熟練掌握矩形的判定及性質(zhì)、菱形的性質(zhì)是解題的關鍵.23、(1)∠D=32°;(2)①BE=;②【解析】

(Ⅰ)連接OC,CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長;②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論