




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
等比數(shù)到及其前刀項(xiàng)和
1基礎(chǔ)知要打牢強(qiáng)雙基|固本源|得基礎(chǔ)分|掌握程度
[知識(shí)能否憶起]
1.等比數(shù)列的有關(guān)概念
(1)定義:
如果一個(gè)數(shù)列從第工項(xiàng)起,每.一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做
等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母。表示,定義的表達(dá)式為F=g(〃eN*,g為非零
常數(shù)).
⑵等比中項(xiàng):
如果a、G、6成等比數(shù)列,那么R叫做a與6的等比中項(xiàng).即:G是a與6的等比中項(xiàng)0a,G,6成
等比數(shù)列今£望.
2,等比數(shù)列的有關(guān)公式
(1)通項(xiàng)公式:a?-aiq~\
nai,q-1,
(2)前n項(xiàng)和公式:S=<&\-cfai-anq
i=~\,qW1-
1-(71-7
3.等比數(shù)列{a}的常用性質(zhì)
(1)在等比數(shù)列{劣}中,若n=p+q=2r(m,n,p,q,rEK),則8?為二劣?為二成
特別地,a\an-/a一i=a-,an-2-….
⑵在公比為q的等比數(shù)列{4}中,數(shù)歹IJHm,Q-m+k,3.//I+2Zr,<9卯+34,…仍是等比數(shù)列,公比為£;
數(shù)列S?,5必一5,&勿一S叫…仍是等比數(shù)歹U(此時(shí)[W-1);
n-m
an-amq.
[小題能否全?。?/p>
1.(教材習(xí)題改編)等比數(shù)列{a}中,&=4,則勿-戈等于()
A.4B,8
C.16D.32
解析:選C82?a二嗇二16.
2.已知等比數(shù)列{a}的前三項(xiàng)依次為H-1,女+1,女+4,則為=()
C.4?D.4?
解析:選C(a+I)、(a-1)(a+4)=a=5,
2二4,q=~,故為=4?⑸”I
3.已知等比數(shù)列{劣}滿足a+&二3,&+8二6,則&二()
A.64B.81
C.128D.243
a.2+當(dāng)
解析:選A<7=--=2,
a\十a(chǎn),2
故謝+劭q=3今&二1,&=1X277=64.
4.(?北京高考)在等比數(shù)歹IJ{a}中,若打=a=4,則公比q-;功+/+~+4=.
1
11
33
得
解析
4解得2
包
國(guó)。
為
+當(dāng)++
--q7--2-2n2-
12-
才
答
案2-
-
5.(?新課標(biāo)全2國(guó)卷)等比數(shù)列{a}的前刀項(xiàng)和為S,若$+3s=0,貝IJ公比。=.
解析:W+3s—0,「.a+均+&+3(a+3,2)—0,
ai(4+4(?+/)=0.
&W0,**?Q——2.
答案:-2
1.等比數(shù)列的特征
(1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的,公比。也是非零常數(shù).
(2)由為+|=四小并不能立即斷言{aj為等比數(shù)列,還要驗(yàn)證&W0.
2.等比數(shù)列的前〃項(xiàng)和S
(1)等比數(shù)列的前〃項(xiàng)和S是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中的運(yùn)用.
(2)在運(yùn)用等比數(shù)列的前〃項(xiàng)和公式時(shí),必須注意對(duì)<7=1與。W1分類討論,防止因忽略0=1這一特
殊情形導(dǎo)致解題失誤.
后高頻考點(diǎn)要通關(guān)抓考點(diǎn)|學(xué)技法|得拔高分|掌握程度
等比數(shù)列的判定與證明
典題導(dǎo)入
[例1]已知數(shù)列{4}的前〃項(xiàng)和為S,且a+S=/7.
⑴設(shè)G=a-1,求證:{一是等比數(shù)列;
⑵求數(shù)列{&}的通項(xiàng)公式.
[自主解答](1)證明::a+S二億①
??3,n+1+Sn+1=Z7+1.(2)
②一①得為+1一2+2+1—1,
—
「?22+1二為+1**-2(5/7+11)—Q,n~1.
*-XI
--
2X12
首
項(xiàng)
I又
-&X+劭-
-al-
11
a-2---2-
又C"=a〃-1,故{cj是以?為首項(xiàng),]為公比的等比數(shù)列.
在本例條件下,若數(shù)列{如滿足4=4=&-ai522),證期仍}是等比數(shù)列.
證明:;由⑵知z=1-曲,
當(dāng)時(shí),bn-an-an-\
又加二國(guó)二;也符合上式,,bn=
1
-2-二數(shù)列{4}是等比數(shù)列.
由題悟法
等比數(shù)列的判定方法
(1)定義法:若與:二勺⑦為非零常數(shù),〃WN*)或子=。沁為非零常數(shù)且〃》2,〃EN*),貝Maj是等比
anan-l
數(shù)列.
(2)等比中項(xiàng)法:若數(shù)列{2}中,a〃#0且M=a-a?(〃EN*),則數(shù)列{a}是等比數(shù)列.
(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成%=c?£(c,g均是不為0的常數(shù),〃EN*),貝lj{aj是等比數(shù)
以題試法
1.(?沈陽(yáng)模擬)已知函數(shù)Hx)=log4,且所有項(xiàng)為正數(shù)的無(wú)窮數(shù)列{aj滿足logaae-log?=2,
則數(shù)列面}()
A.一定是等比數(shù)列
B.一定是等差數(shù)列
C.既是等差數(shù)列又是等比數(shù)列
D.既不是等差數(shù)列又不是等比數(shù)列
....3,n+1o3,n+1Q,,,.
解析:選A由logaa〃+1-logaa〃=2,得loga---=2=logaa,故---=a.又a〉0且a#l,所以數(shù)列{aj
為等比數(shù)列.
等比數(shù)列的基本運(yùn)算
典題導(dǎo)入
[例2](?全國(guó)高考)設(shè)等比數(shù)列{aj的前〃項(xiàng)和為S,已知勿=6,6&+a3=30,求a〃和S.
[自主解答]設(shè)仿〃}的公比為。
「團(tuán)<?=6,fai=3,fai=2,
由題設(shè)得G+解得或q
[6ai+aiq2=30.[<7=2?[<7=3.
當(dāng)ai=3,q=2時(shí),a?=3X2n-\S〃=3X(2"-1);
當(dāng)ai=2,<7=3時(shí),a〃=2X3"T,S=3"-l.
由題悟法
1.等比數(shù)列基本量的運(yùn)算是等比數(shù)列中的一類基本問(wèn)題,數(shù)列中有五個(gè)量n,Q,S,一般可
以“知三求二”,通過(guò)列方程(組)可迎刃而解.
2.在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)根據(jù)公比q的情況進(jìn)行分類討論,切不可忽視q的取值而
盲目用求和公式.
以題試法
2.(?山西適應(yīng)性訓(xùn)練)已知數(shù)列{aj是公差不為零的等差數(shù)列,a=2,且a?,國(guó),備成等比數(shù)列.
(1)求數(shù)列U}的通項(xiàng)公式;
(2)求數(shù)列{3aj的前〃項(xiàng)和.
解:(1)設(shè)等差數(shù)列{aj的公差為d(掙0).
因?yàn)閍z,&,戊成等比數(shù)列,
所以(2+3切j(2+中?(2+7,
解得d=2.
所以a〃=2〃(〃EN*).
⑵由⑴知3&=3",設(shè)數(shù)列{3aj的前〃項(xiàng)和為Sn,
,,,91-9"9
貝(]S=3-+3,+“?+32”=———'W(9〃一l).
3等比數(shù)列的性質(zhì)
典題導(dǎo)入
[例3](1)(?威海模擬)在由正數(shù)組成的等比數(shù)列{aj中,若a334a5=3",貝IJsin(log34+log3a2+…
+log3a7)的值為()
1A/3
A."B.
C.1D.
(2)設(shè)等比數(shù)列{a}的前〃項(xiàng)和為S,若&二1:2,則國(guó):友等于()
A.1:2B,2:3
C.3:4D,1:3
?JI
[自主解答](1)因?yàn)槟?2&5—3—言,所以54=3—
log351+log3&+,,,+log357
二10g3(dld2…&)=10g3S4
JI7n
=71og33—,
故sin(log3ai+log3H2+…+log3a7)二七
(2)由等比數(shù)列的性質(zhì):&,仍成等比數(shù)列,于是(&-&)2W?(<59—S&),
將&=、&代入得搟=
[答案](1)B(2)C
由題悟法
等比數(shù)列與等差數(shù)列在定義上只有“一字之差”,它們的通項(xiàng)公式和性質(zhì)有許多相似之處,其中等差
數(shù)列中的“和”“倍數(shù)”可以與等比數(shù)列中的“積”“褰”相類比.關(guān)注它們之間的異同有助于我們從整
體上把握,同時(shí)也有利于類比思想的推廣.對(duì)于等差數(shù)列項(xiàng)的和或等比數(shù)列項(xiàng)的積的運(yùn)算,若能關(guān)注通項(xiàng)
公式為二廣(〃)的下標(biāo)〃的大小關(guān)系,可簡(jiǎn)化題目的運(yùn)算.
以題試法
3.(L)(?新課標(biāo)全國(guó)卷)已知{a}為等比數(shù)列,&+&=2,氏氏=一8、則劭+&o=()
A.7B.5
C.-5D.-7
1
-4-
(2)(?成都模擬)已知②是等比數(shù)列,&=2,貝(]a?+a2a3+…+a?a?+1=()
A.16(1-4")B.16(1-2")
C.牛D.牛(1-2子
OO
解析:(1)選D法一:
,3.6c
2+2二石10+&。=2,
4V529Q
{a5a二MXaiq=a^q=-o,
”=-2,31
q=F
解得一或
ai=-8,
故地+aw=ai(1+q)=-7.
ja+&二2,包=-2,二4,
法二:由1
[d5a=dA&l二-8,氏二=—2.
故&+510=ai(l+^)=-7.
a\--8,
11
242/7
->為--->--
⑵選C4al2
故汰&+
晶解題訓(xùn)練要高效
抓速度I抓規(guī)范I拒絕眼高手低I掌握程度
A級(jí)全員必做題
1.設(shè)數(shù)列{aj是等比數(shù)列,前〃項(xiàng)和為S,若&=3as,則公比1為()
1
A-B
-21
11
-_或D.4-
解析:選c當(dāng)q=l時(shí),滿足W=3劭=3&.
13
1—<7/、
當(dāng)時(shí),&二----------二ai(l+°+°9)=3<31(79,
一q
解得,=一'!,綜上或q=L
c
2.(?東城模擬)設(shè)數(shù)列{4}滿足:2劣二為+1(aW0)(〃£“),且前〃項(xiàng)和為S,則'的值為()
及
1515
A?5B.7
C.4D,2
-1-2、
S1—21c
解析:選A由題意知,數(shù)列{aj是以2為公比的等比數(shù)列,故3=—;=3.
3.2^1AZZ
3.(-安徽高考)公比為2的等比數(shù)列{aj的各項(xiàng)都是正數(shù),且一一=16,則log2a|。=()
A.4B.5
C.6D.7
解析:選Ba-3,an=16,a?=16.
又??,等比數(shù)列,}的各項(xiàng)都是正數(shù),a,=4.
又aw=aiq=4X23=25,二log2aio=5.
4.已知數(shù)列{aj,則“a”,a?+1,a〃+2(〃CN*)成等比數(shù)列”是“a3=a〃a〃+2”的()
A.充分不必要條件B.必要不充分條件
C,充要條件D.既不充分也不必要條件
解析:選A顯然,/JEN*,a”,ae,a〃+2成等比數(shù)列,貝a3=a〃a〃+2,反之,則不一定成立,舉反例,
如數(shù)列為1,0,0,0,…
5.(?太原模擬)各項(xiàng)均為正數(shù)的等比數(shù)列{a〃}的前〃項(xiàng)和為S,若S=2,S3.=14,則S〃等于()
A.80B.30.
C.26D.16
解析:選B設(shè)甌二名兄=6,由等比數(shù)列的性質(zhì)知:
2(14-5)=(a-2)2,解得a=6或a--4(舍去),
同理(6-2)(Z?-14)=(14-6)2,所以6==30.
6,已知方程(V-腔+2)(9-m+2)=0的四個(gè)根組成以T為首項(xiàng)的等比數(shù)列,則;()
33,
A.]B.薄§
2
C."D.以上都不對(duì)
解析:選B設(shè)乃,b,c,d是方程(V-勿x+2)(*-〃匠+2)=0的四個(gè)根,不妨設(shè)水水水瓦則a?6
1
29
-c*-a-2-故6=4,根據(jù)等比數(shù)列的性質(zhì),得到。=1,d=2,則*己+6=5,n=c+d=3,或加
3"2
或
貝
-2-一-3-
=c+d=3,n=a+b=?,刀
7.已知各項(xiàng)不為。的等差數(shù)列{4},滿足2&-修+2為1=0,數(shù)列{4}是等比數(shù)列,且〃二劭貝IJ優(yōu)加
解析:由題意可知,優(yōu)質(zhì)=4=若=2(a+&i)=4劭
,「&W0,ai=4,bebs=16.
答案:16
8.(-江西高考)等比數(shù)列{2}的前〃項(xiàng)和為S,公比不為1.若&=1,則對(duì)任意的77EN*,都有a+2
+an+i-2品=0,貝IJS5=.
解析:由題意知&+/-22=0,設(shè)公比為q貝IJ功("+。-2)=0.由/+。一2=0解得。二一2或。=
句1—Q'1——25
1(舍去),貝[|£二---;一~--=-----------=11.
i-qo
答案:11
9.(?西城期末)已知{aj是公比為2的等比數(shù)列,若a3-ai=6,則國(guó)=_______;A+A+??-+A=
3,2an
解析:,.,{&}是公比為2的等比數(shù)列,且電一。二6,..?4國(guó)一4=6,即刈-2,故a=A2"T=2",
I),,?=6)',即數(shù)歹招是首項(xiàng)為士公比為抽等比數(shù)歹1
11
-
-^
11144r
2
+2++2----不
&a1
52-
4
答案:2,1
10.設(shè)數(shù)列{aj的前〃項(xiàng)和為S,a=1,且數(shù)列{S}是以2為公比的等比數(shù)列.
(1)求數(shù)列{aj的通項(xiàng)公式;
(2)求國(guó)+as+…+a2B+i.
解:⑴?.■S=a1=l,且數(shù)列{$}是以2為公比的等比數(shù)列,.??$=2〃」
又當(dāng)時(shí),a〃=S-S-i=2f(2_l)=2",
Jl,"=L
an=\,
(2)a3,as,…,a?小是以2為首項(xiàng),以4為公比的等比數(shù)列,
21-4"24n-l
a+a++a+i=:;=~.
352n1-46
24n-122/7+1+1
?二31+乃3+…+=1+---------------=-----------
OO
11.設(shè)數(shù)列匕.}的前〃項(xiàng)和為S,其中為#0,&為常數(shù),且S"成等差數(shù)列.
(1)求{aj的通項(xiàng)公式;
⑵設(shè)4=1-S,問(wèn):是否存在&,使數(shù)列⑥為等比數(shù)列?若存在,求出國(guó)的值;若不存在,請(qǐng)說(shuō)
明理由.
解:(1)依題意,得2S=a〃+i.-ai.
|2Sn—<in+1—,
當(dāng)時(shí),有__
[23〃-1—8nHl.
兩式相減,得a+i=3”(刀22).
又因?yàn)閍2=251+&=3si,&W0,
所以數(shù)列.3}是首項(xiàng)為見(jiàn)公比為3的等比數(shù)列.
因此,叱?3'T(Z?EN*).
21—3"11
(2)因?yàn)镾n=---------------=5功?3”-5次
1—0ZZ
b?=l-Sn=l+~ai--ai?3”.
要使{"}為等比數(shù)列,當(dāng)且僅當(dāng)1+呆=0,即4=-2.
所以存在國(guó)=-2,使數(shù)列{4}為等比數(shù)列.
12.(?山東高考)已知等差數(shù)列{綴}的前5項(xiàng)和為105,且aio=2as.
(1)求數(shù)列U}的通項(xiàng)公式;
⑵對(duì)任意mEN*,將數(shù)列{aj中不大于7冊(cè)的項(xiàng)的個(gè)數(shù)記為求數(shù)列{圖的前m項(xiàng)和
解:(1)設(shè)數(shù)列{&}的公差為d前〃項(xiàng)和為Tn,
由乙二105,aw=2a5,
f5X5-1
5劭+-----------d-105,
得2
&+9d=2a\+4d,
解得a=7,d=7.
因此a?-ai+(72-1)</=7+7(72-1)=7〃(〃EN*).
(2)對(duì)mCN*,若貝1
因此4=7*1
所以數(shù)列{晶是首項(xiàng)為7,公比為49的等比數(shù)列,
bi1-q7X1-49"7Xllm-172/,+1-7
故'=~\^q-=1-49=48=-48-,
8級(jí)重點(diǎn)選做題
a0+12_
1.若數(shù)列{aj滿足一*為正常數(shù),〃GN*),則稱數(shù)列{aj為“等方比數(shù)列”.甲:數(shù)列{aj是等
eLn
方比數(shù)列;乙:數(shù)列{&}是等比數(shù)列,則甲是乙的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
22
an+1a。+1I-a”+1+1??
解析:選B若二廠=。,則:一=土丘,不是定值;若二一=q則工丁=/,且為正常數(shù),故甲是乙
&n&ndn<d,n
的必要不充分條件.
2.(?浙江高考)設(shè)公比為°(q>0)的等比數(shù)列{a}的前〃項(xiàng)和為S,若£=3/+2,2=3&+2,則。
解析:法一:S=$+&+&=3/+2+&+&=3&+2,將a二a20,叢二代入得,
3/+2+/q+&/=3/(/+2,化簡(jiǎn)得2/-0-3=0,
3
解得,二5(。二-1不合題意,舍去).
法二:設(shè)等比數(shù)列{a}的首項(xiàng)為現(xiàn)由$=3/+2,得
a1(1+Q)=3Hl0+2.①
由S=3a+2,得功(1+(7)(1+q)=3乃1"+2.②
由②—①得國(guó)/(I+,)=3&°(/-1).
3
?.,力0,q=~.
答案
3.已知數(shù)列{a}的前刀項(xiàng)和為S,且S=4a-3(/?EN*).
⑴證明:數(shù)歹U?}是等比數(shù)歹卜
(2)若數(shù)列⑻滿足4+1=%+4SEN*),且及=2,求數(shù)列{4}的通項(xiàng)公式.
解:⑴證明:依題意s=4&-3SEN*),
時(shí),ai=4ai-3,解得團(tuán)=1.
因?yàn)镾=4a一3,
則Sn-i=4為一1-3(g2),
所以當(dāng)?shù)?2時(shí),an-Sn-Sn-\-4^-i,
4
整理得a=-a-i.
non
又囪=1W0,
4
所以{a}是首項(xiàng)為1,公比為Q的等比數(shù)列.
⑵因?yàn)闉槎?/p>
由bn+[=4+5〃(〃EN*),得bn+l-4=e”-)
可得4=打+(&-61)+(&-&)++(&-bn-\)
*
1522),
當(dāng)〃=1時(shí)也滿足,
所以數(shù)列{4}的通項(xiàng)公式為4=3?
|敖桿備選曝
.1.(?大綱全國(guó)卷)已知數(shù)列{a}的前〃項(xiàng)和為s,ai=l,S=2a+1,則S=()
A.2”TB.Ik
1
c.D.
Q-n+1
==
解析:選B?Sn~23,n+1,.e.當(dāng)/22時(shí),Sn-12d“,??an-Sn—Sn-124+1—2品,??3d,n~23,n+1,?
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45243-2025保健食品中硫胺素、核黃素、吡哆醇、煙酸、煙酰胺和咖啡因的測(cè)定
- 【正版授權(quán)】 IEC 60335-2-78:2021/AMD1:2025 EN-FR Amendment 1 - Household and similar electrical appliances - Safety - Part 2-78: Particular requirements for outdoor barbecues
- 勞動(dòng)合同簡(jiǎn)易
- 路燈買賣合同協(xié)議書(shū)
- 教育培訓(xùn)機(jī)構(gòu)場(chǎng)地租賃合同
- 地下室出租協(xié)議書(shū)
- 施工工程承包合同
- 企業(yè)運(yùn)輸合同個(gè)人運(yùn)輸合同
- 經(jīng)銷商銷售合同協(xié)議
- 鐵路貨物的運(yùn)輸合同
- 綜采工作面自動(dòng)化控制系統(tǒng)培訓(xùn)課件2024
- 充電器電路安裝與調(diào)試
- 分布式光伏高處作業(yè)專項(xiàng)施工方案
- 《冠心病的介入治療》課件
- 浙江省建設(shè)工程錢江杯獎(jiǎng)(工程)評(píng)審細(xì)則
- 膀胱損傷病人護(hù)理課件
- 中醫(yī)防感冒健康知識(shí)講座
- 《土壤與土壤改良》課件
- ISO9001ISO14001ISO45001外部審核資料清單
- 張岱年:《中國(guó)文化概論》
- 繪本成語(yǔ)故事:四面楚歌
評(píng)論
0/150
提交評(píng)論