Capgemini-2024年數(shù)據(jù)驅(qū)動(dòng)型企業(yè) Data-powered enterprises The path to data mastery_第1頁(yè)
Capgemini-2024年數(shù)據(jù)驅(qū)動(dòng)型企業(yè) Data-powered enterprises The path to data mastery_第2頁(yè)
Capgemini-2024年數(shù)據(jù)驅(qū)動(dòng)型企業(yè) Data-powered enterprises The path to data mastery_第3頁(yè)
Capgemini-2024年數(shù)據(jù)驅(qū)動(dòng)型企業(yè) Data-powered enterprises The path to data mastery_第4頁(yè)
Capgemini-2024年數(shù)據(jù)驅(qū)動(dòng)型企業(yè) Data-powered enterprises The path to data mastery_第5頁(yè)
已閱讀5頁(yè),還剩145頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Data-powered

enterprises:Thepathtodatamastery

#GetTheFutureYouWant

2

Data-poweredenterprises:Thepathtodatamastery

04

Executive

summary

06

Whoshouldreadthis

reportandwhy?

12

Howhaveorganizationsprogressed

ontheirdatamasteryjourneys?

Tableof

contents

08

Introduction

16

Organizationshaveimproved

decision-makingandmonetization,butdata

identificationandaccessrequiremorefocus

10

Definingthe

data-poweredenterprise

24

GenerativeAIistransforming

thedatalandscape

CapgeminiResearchInstitute2024

3

Data-poweredenterprises:Thepathtodatamastery

50

Conclusion

32

Whatbenefitsdo

datamastersreceive?

51

Research

methodology

38

Howaredatamastersleading

thedatatransformation?

53

Appendix

CapgeminiResearchInstitute2024

4

Data-poweredenterprises:Thepathtodatamastery

theirnon-technicalfoundations(culture,ethicalguardrails,

governancemechanisms,andlegalandregulatory

frameworks).Overhalf(56%)considerthemselvesmatureontechnicalfoundations(data,technology,infrastructure,andtechnicalskills).Wealsoinvestigatetheriseofgenerative

AIanditsimpactondataoperations.Wefoundthat60%oforganizationshaveimplementedpilotsorlaunchedearly

proofsofconcept(PoCs)ofgenerativeAIinitiativesbasedontheirenterprisedata.However,75%ofdataexecutives

citelarge-scaledeploymentofgenerativeAIPoCsasamajorchallenge.Forinstance,only42%ofdataexecutiveshave

therequireddatatotraingenerativeAImodels.Thescale

ofthebusinessopportunityhasincreasedfordata-poweredenterpriseswhencomparedto2020andsohasthebarto

becomeadata-poweredenterpriseasthebreadthofusecasesfordatahasrisen.

Inthe2020editionofourresearch,

Thedata-powered

enterprise:Whyorganizationsmuststrengthentheirdata

mastery,

wefoundthatorganizationshadmadeheadway

Executive

Summary

ondata-powereddecision-making.However,achievingdatamasterywasstillalongroadaheadformany.Today,nearlytwointhreeexecutivesagreethattheirorganizationsuseactivateddatatointroducenewproductsorservicesortodevelopentirelynewbusinessmodels.Thisyear’sreport,

thenextinthedata-poweredenterprisesseries,findsthat,whilemanyofthechallengeswenotedfouryearsago

persist,theyhavediminishedinintensity,asthechallengesthatwerehistoricallyseenasbigissues,havebecome

secondaryasnewprioritieslikeAIhavecometothefore.

Thisyear,wealsoexplorehowreadydatafoundations

aretoharnessthepowerofgenerativeAI.Only40%ofdataexecutivesstatetheirorganizationshavedeveloped

CapgeminiResearchInstitute2024

5

Data-poweredenterprises:Thepathtodatamastery

Weanalyzedtheorganizationsthat

participatedinourresearchacross

datafoundationsanddatabehaviors

Executive

Summary

andfoundthat17%qualifiedasdata

mastersandreaphigherbenefits

acrossdataoperations,generativeAI,business,andfinancialmetrics.83%ofdatamastershavehigheffectivenessinquantifyingthevalueofdataassetsandmonetizingthem,comparedwith61%ofothers.

Wehighlightkeyareasthat

organizationsshouldfocusonin

ordertoacceleratetheirjourneystobecomingdata-poweredenterprises:

?First,definethedatastrategyasaseamlesslyunifiedeffortbetweenbusinessanddataexecutives

?Aimtoenhancedatasynergyanddemocratizationacrossthebusinesswith

thedatafoundationnecessarytoimplementandscalegenerativeAIandotherinnovationspoweredbydata

?PutinplacethegovernanceframeworkrequiredforinnovationspoweredbydatasuchasgenerativeAIdatapilotsandasthenecessaryelementstoensuretrustindataoperations

?Enableemployeestobepoweredbydatathroughupskillingandacollaborativeculture

?Finally,equipforscalingonimpact,withafocusonbusinessprioritieswhileleveragingajointplatformstrategy

CapgeminiResearchInstitute2024

6

Data-poweredenterprises:Thepathtodatamastery

Whoshouldreadthisreport

andwhy?

Thisreportfollowsthe2020editionofour

research,

Thedata-poweredenterprise:Why

organizationsmuststrengthentheirdata

mastery

andprovidesinsightsintothedata-

transformationjourneyoforganizationsacrosssectors.Thisreportwillbeparticularlyhelpfulto

chiefdataofficers,chiefinformationofficers,chieftechnologyofficers,chiefanalytics

officers,enterpriseanalyticsarchitects,anddataarchitects.Additionally,giventhecurrentcentralroleofAIinthedatalandscape,this

reportwillalsoinformAI,analytics,anddatascienceleaders.

Finally,sustainabilityleaderswillfinditusefulinlightofrecentlyintroducedregulations.

Thisreportisbasedonthefindingsofan

industrysurveyof500businessexecutivesand500dataexecutivesfrom500organizations

across12countries.Allorganizationshad

annualrevenueabove$1billion.Executivessurveyedweredirector-levelandaboveandwereselectedfromacrossbusinessanddatafunctions.SeetheResearchMethodologyattheendofthereportformoredetails.

CapgeminiResearchInstitute2024

7

Data-poweredenterprises:Thepathtodatamastery

CapgeminiResearchInstitute2024

8

Data-poweredenterprises:Thepathtodatamastery

Introduction

theirdatacollection,storage,retrieval,andgovernance

processes.Organizationsthathaveprogressedonthisdatamasteryjourneyarealreadyreapingbenefits,asvisiblefromtheimprovementshownintheiroperationsandfinancial

metrics.Further,withgenerativeAI,thepowerofdatahasgrownmanifold,butdoorganizationshavetherightdatafoundationstobeabletoscaleandproductionizetheir

generativeAIinitiativesandderivevalueoutofthose?

Tofindanswerstosuchquestionsandtoassessthecurrentstateoftheorganizationonthedatafront,weconducted

aglobalsurveyof500businessexecutivesand500data

executivesfrom500organizationsacross12countries.Wealsoconducteddetailedinterviewswith10seniorexecutivesfromacrossindustries.

Todaydataholdsunparalleledpotential.Asmallusecase,

suchasreal-timedataaboutdelayedtrains,cansave27

millionworkinghours,equivalentto€740millioninlabor

costsfortheEuropeanUnion1.Inadditiontoimproving

operationalefficienciesandsavingcosts,organizations

todayareincreasinglymonetizingdataandleveragingitto

boosttheirtoplines.Forexample,companieslikeCoca-Colaareusingdataforintelligentrevenuegrowthmanagementincludingformulatingsegmentationandpricingstrategies,portfolioandpackmix,andpromotions2.Infact,CocaCola’sintelligentprioritizationmodelisbelievedtohaveresultedinarevenuegrowthof9%inthefirsthalfof20233.

However,inordertoleveragedataformaximumpotential,organizationswillneedtomakesignificantchangesto

CapgeminiResearchInstitute2024

9

Data-poweredenterprises:Thepathtodatamastery

Introduction

Basedonourresearch,wehavedelvedintothefollowingkeyareasinthereport

01

Howhave

organizations

progressed

ontheirdata

masteryjourney?

02

Whicharethe

keyareaswhere

organizationshaveimproved,andhavegroundtocover?

03

DotheorganizationshavethenecessarydatafoundationstoleveragegenerativeAIsuccessfully?

04

Whatarethebenefitsbeingobservedbydatamasters?

05

Whatarethekeyareas

thatorganizationsshouldfocusontoacceleratetheirjourneytobecominga

data-poweredenterprise?

CapgeminiResearchInstitute2024

10

Data-poweredenterprises:Thepathtodatamastery

Definingthedata-poweredenterprise

Wedefineadata-poweredenterpriseasan

organizationthatcancreate,process,and

leveragedataproactivelytoachieveitsbusinessobjectives,increaseoperationalexcellence,

improvecustomerexperience,anddriveinnovation.

Suchanorganizationwillbeableto:

datasets

Identify

Identifyallitsdatasets–internalaswellas

external,keydatamakersandusers,data

sources,andreadydatasets

Fosterdataculture

collectandinnovatewithdata

Create,

Designdataproductsandenableprocessestocreate,

captureand/orprocuredataandmodelsthrough

collaborationwithinandwithotherorganizations,and

automateprocessestocollectthesee?ectively

Deploydata-poweredpracticesto

continuouslydevelopandevolvea

datamasteryculture

9

Designguidingprinciples

Unlockthevalue

UnlockthevalueofdataandAIby

quantifyingandmanagingitsvalueas

wellasbymonetizingit

Designanddevelopguidingprinciplesfordataand

modelaccess,usage,security,sustainability,and

ethicalconsiderationstoensureethicalpracticesfor

dataandanalytics

3

8

Data-poweredenterprise

Nurture

skills

NurturetherequireddataandAI/generativeAIskillsintheorganizationtodemocratizeeasyaccessto dataanddata-powereddecision-makingforall

Scaleinfrastructureandtools

Scaleandmodernizetheirinfrastructure(storageandcompute

power)andtools(suchasBI,datavisualization,advanced

analytics,orAI/generativeAIwithautomationandstandardization

toenableagilityand(self-service)usageondemand

4

7

5

6

Activatedata

Processandharvestdata

Embeddataandinsightsintothecorebusinessprocesses

alongsideAI/generativeAIandenablebusinessownershipof

datatodrivebusinessgoals(suchasoperationale?ciencies,

newrevenueopportunitiesorbusiness-modelinnovation)

Leveragedataandmodelsforproactiveandagile

decision-makingandactioning,throughprocuringand

developingbusinessintelligence,analytics,andAImodels

1

2

CapgeminiResearchInstitute2024

11

Data-poweredenterprises:Thepathtodatamastery

Whenwecompare2020insightswith2024’s,itisclearthatthescaleofthebusinessopportunity

hasincreasedfordata-poweredenterprises,

which,inturn,hasmeantanincreaseinthescaleofthechallengeofdeliveringdatamastery.AsweseeAIadoptionincrease,weexpectbothofthesebarstocontinuetorise,meaningthateventhosewhoareconsidereddata-poweredenterprises

todaycannotrestontheirlaurelsandexpectcontinuedexcellence.

CapgeminiResearchInstitute2024

12

Data-poweredenterprises:Thepathtodatamastery

01

Howhaveorganizationsprogressedontheirdatamasteryjourneys?

CapgeminiResearchInstitute2024

13

Data-poweredenterprises:Thepathtodatamastery

Howareorganizationsperformingontheindividual

dimensionsthatconstituteadata-poweredenterprise?

Weanalyzedninedimensionsofdata-powered

enterprises(seeDefiningthe“data-poweredenterprise”atthebeginningofthereport)andfoundthat,inthepastfouryears,organizationshaveonaverageimprovedin

activatingdata;4unlockingvaluefromdata;andscalinginfrastructure,platforms,andtools(seeFigure1).Nearlytwo-thirdsofexecutivesstatetheirorganizationsuse

activateddata*tointroducenewproductsorserviceswithinexistingbusinessmodelsortodevelopentirelynewbusinessmodels(upfromfourintenin2020).

However,moreusesfordatathroughactivationand

unlockingthevaluehaveincreasedthefoundational

challengesofgettingthedataandidentifyingtherightdataandmodels.Whenitcomestoidentifyingand

collectingdataandcreatingdatamodels–alsokeyareasforgenerativeAImodels–organizationslag.Only42%ofdataexecutivessaytheycurrentlyreceivetherequired

datatotrainAI/generativeAImodels.Thecreatingandcollectingdatadimensionscoresleastwellamongthe

nineparametersforadata-poweredenterprise(seeFigure1).

TheHeadofAIandAutomationatatelecomfirm,discussesthedataidentificationandcollection

challengesforlargeenterprises:

“Manyofthesedata-relatedissuesarehuman-made,

stemmingfromsiloedoperations.Individualsaccessdata,

interpretitdifferently,andcreateuniquefeatureswithoutcentralcoordination.Thisresultsinfragmenteddata

processing.Forexample,intelcos,customerordersgo

throughvariousisolatedbusinessunits,includingcustomercare,services,andfrauddetection,witheachteamhandlingdataseparatelyandwithminimalcommunication.Adata-poweredenterprisecanonlybeachievedbybreakingdownthesesilosandfosteringadata-drivenculture.”

Note:*By'activateddata,'wemeanembeddataandinsightsintothe

corebusinessprocessesalongsideAI/generativeAIandenablebusinessownershipofdatatodrivebusinessgoals

3.2

3.3

2.6

3.2

3.1

3.5

3.1

3.2

2.73.2

3.13.1

3.23.1

3.33.0

Figure1:

Spiderchartforthedimensionsofadata-poweredenterprise

Averagescoreacrossninedimensions

Unlockthevalue

Processandharvestdataandmodels

Scaleinfrastructure,platformandtools

3

1

Activatedata

5

4Nurtureskills

3.4

oo2se

Foster

3.3

oo0oedataculture

Identifythe

dataandmodels

Designguidingprinciples

Create,collect,andusedatatoinnovate

一20242020

Source:CapgeminiResearchInstitute,Data-poweredenterprisessurvey,April2024,N=500organizationsrepresentedby500data

executivesand500businessexecutives;CapgeminiResearchInstitute,Data-poweredenterprisessurvey,August2020,

N=1,004organizations.

CapgeminiResearchInstitute2024

14

Data-poweredenterprises:Thepathtodatamastery

Howhaveorganizationsevolvedandwhoarethedatamasters?

Weanalyzedtheorganizationsthatparticipatedinourresearchacrossanumberofcriticalelements

andfoundthat17%qualifiedasdatamasters.These

elementsformthetwodimensionsofdatamastery:Datafoundationsanddatabehaviors.Thedatafoundations

Elementsofdatamastery

Datafoundation/enablerparameters

Scaleinfrastructure,platform,andtools

Identifyallitsdataandmodels

Processandharvestdataandmodels

Data-governanceimplementation

Createandcollectdata

DataandAIplatform

arethenecessarytoolsandtechnologieswithwhichanorganizationcanuseandleveragedata,whiledatabehaviorsarepartoftheDNAoftheorganizationandrelatetopeople,processes,skills,andculture.Takentogether,theydrivedatamastery.

Databehaviorparameters

Activatedata

Data-guidingprinciples(dataaccess,interoperability,security)

Dataactivationvisionandstrategy

Fosterdataculture

Unlockthevalue

Basedonthesedimensions,wefound:

%

oforganizationsfallintothe‘datalaggards’categoryandfailtoleadineitherdimension(71%inthepreviousreport)

33%

oforganizationsleadinonedimensionbutnottheother(14%inthepreviousreport)

%

17

oforganizationsfallintothedatamasterscategory,leadinginbothdimensions(16%inthepreviousreport)

(Pleaserefertotheappendixforadditionaldetails)

CapgeminiResearchInstitute2024

15

Data-poweredenterprises:Thepathtodatamastery

Theshareofdatalaggardshasreducedsignificantlyfrom71%inthepreviousreportto50%thisyear,suggestingthatorganizationshaveevolvedinthedimensionsofdatafoundationanddatabehavior.

Figure2:

Oneintwoorganizationscanbeclassifiedasdatalaggardstoday

Databehaviors

17%7%

Dataaware

Dataenabled16%7%

Datamasters17%16%

50%71%Datalaggards

Datafoundations

20242020

CapgeminiResearchInstitute,Data-poweredenterprisessurvey,April2024,N=500organizationsrepresentedby500dataexecutivesand500businessexecutives;CapgeminiResearchInstitute,Data-poweredenterprisessurvey,August2020,N=1,004organizations.

Note:Numbersmaynotaddtoexactly100duetoroundingofferror.

CapgeminiResearchInstitute2024

16

02

Organizationshave

improveddecision-makingandmonetization,butdataidentificationandaccess

requiremorefocus

17

Data-poweredenterprises:Thepathtodatamastery

Since2020,organizationshavebecomemore

adeptatactivatingandunlockingvaluefromdataforbusinessandfinancialgains

Comparedwithafewyearsago,organizationstodayaremoreeffectiveatembeddingdataandinsights

intocorebusinessprocessesandusingproprietary

datatodrivebusinessgoals.OrganizationsaremoresophisticatedintermsofunlockingandquantifyingthevalueofdataandAIandevenmonetizingit,

eitherbysellingtothirdpartiesorgeneratingusableinsights.ThedataeconomyinEuropewasvaluedataround€301billionin2018,andisprojectedtoreach€829billionby2025,from2%to6%ofregionalGDP5.

Organizationshaveimprovedtheirabilitytoactivatedatafordecision-making

Toachievedatamaturity,datamustbeintegratedintotheorganization’sdecision-makingfabric.Inour2020research,Thedata-poweredenterprise6,halfofthe

executivesstatedtheirinternaldecision-makingwasdata-powered.In2024,60%ofexecutivesdescribedtheirdecision-makingandactioningasdata-powered(seeFigure3).

%

ofexecutivesagreedthatdecision-makingintheirorganizationsisdrivenbydata

Figure3.

Organizationsaremarchingaheadondata-powereddecision-making

%agreeingthatdecision-makingintheirorganizationsisdrivenbydata

60%

50%

38%

202420202018

Source:CapgeminiResearchInstitute,DigitalMasterysurvey;April–May2018,N=1,338respondents,757organizations;Capgemini

ResearchInstitute,Data-poweredenterprisessurvey,August2020,N=1,004organizations.CapgeminiResearchInstitute,DataPoweredEnterprise,April2024,N=500organizationsrepresentedby500

dataexecutivesand500businessexecutives.7

CapgeminiResearchInstitute2024

18

FromcompanieslikeAmazonusingdataforone-to-onemarketing,toCoca-Colausingitforenhancedcustomerexperience,KaiserPermanenteforimprovingthequalityofcare,andGoogleusingittodrivesuperiormanager

performance,organizationsareunearthingnewsourcesofvaluefromdata8.Infact,theconsumerproducts

industryisusingdataintensively,fromapplyingconsumerdatatotailoredmarketinganddesigningproductsto

consumerpreferencestooptimizingsupplychains.

TheconsumerproductsindustryusesAIacrossseveral

dimensions.Forexample,Coca-Colainstalledself-servicedrinksmachinesthatletconsumersformulatetheirowndrinks.Usingdatafromthis,itcameupwiththeCherrySpriteflavor.9Similarly,PepsiCousesTrendscope,atoolthatanalysesover500mconversationsfromsocialmediaplatforms,newssites,blogs,forums,andreviewsto

addressconsumerpreferences.Duringthepandemic,PepsiCousedinsightsfromTrendscopetolaunchthe“immunitysupport”versionofitsPropelWater.10

Sixty-fivepercentofbusinessexecutivessaytheir

CxOsusedata-poweredinsightstodrivebusiness.Forinstance,CMOsusecustomerdatatoimprovecustomersatisfaction(CSAT)andnetpromoterscore(NPS).

Data-poweredenterprises:Thepathtodatamastery

Figure4.

Consumerproductsmanufacturingleadinuseofdata-powereddecisionmaking

Decisionmakinginourorganizationiscompletelydata-driven

65%68%

61%

61%

57%55%

60%48%

57%54%

59%47%

59%

58%53%

53%51%

60%50%

44%

43%

43%

Industrial

manufacturing

Energy/utilities

Retail

Banking

GlobalAutomotiveInsuranceTelecom

Lifesciencesandhealthcare

Consumer

products

manufacturing

Government/publicservices

20202024

Source:CapgeminiResearchInstitute,Data-poweredenterprisessurvey,August2020,N=1,004organizationsrepresentedby500dataexecutivesand504businessexecutives.CapgeminiResearchInstitute,Data-poweredenterprisessurvey,April2024,N=500organizationsrepresentedby500dataexecutivesand500businessexecutives.11

CapgeminiResearchInstitute2024

19

TheCDOataEuropeanbank,says:“Now,leadersrecognizethepotentialofdata-drivendecision-makingandproactivelyapproachdatateamswithspecificrequests,enhancing

internalcollaborationandaligningdatastrategieswith

organizationalgoals.”O(jiān)rganizationsarealsoprogressingwiththeevolutionofthedataecosystem,with55%

ofdataexecutivesstatingtheyusestructured,semi-structured,andunstructureddatafordata-powereddecision-makingandimplementation.

Organizationshavemademajorprogressin

unlockingvaluethroughdatamonetization

Nearly70%ofexecutivesdescribedataasanenterpriseassetcomparedwith62%in2020.Further,52%of

respondentsstatethattheirorganizationsquantifythevalueofdataintheiraccountingsystems,compared

with22%in2020.Thepercentageofrespondentswho

agreethattheirorganizationsaremonetizingdataassetsthroughtheirproductsandservicesin2024hasalsogoneup(53%comparedwith43%in2020).

Data-poweredenterprises:Thepathtodatamastery

Figure5.

Overhalfofexecutivesstatethattheirorganizationsaremonetizingdataassetsthroughtheirproductsandservices

%ofexecutivesreportingtheirorganizationmonetizesdatathroughproductsandservices

62%

60%

60%

59%

47%

53%

47%

52%40%

51%

45%43%

55%

46%

45%

43%

40%

41%

42%

36%

Industrial

BankingTelecomInsurance

Global

manufacturingmanufacturing

Consumerproducts

Energy/utilities

2024

Automotive

Retail

Lifesciencesandhealthcare

2020

Source:CapgeminiResearchInstitute,Data-poweredenterprisessurvey,August2020,N=1,004organizationsrepresentedby500dataexecutivesand504businessexecutives.CapgeminiResearchInstitute,Data-poweredenterprisessurvey,April2024,N=500organizationsrepresentedby500dataexecutivesand500businessexecutives.

CapgeminiResearchInstitute2024

20

Dataactivation(embeddingdataandinsightsintothe

corebusinesspro

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論