




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆河南省鄭州市外國語學(xué)校高三數(shù)學(xué)試題模擬考試(四)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,設(shè)為內(nèi)一點(diǎn),且,則與的面積之比為A. B.C. D.2.設(shè)等差數(shù)列的前n項(xiàng)和為,且,,則()A.9 B.12 C. D.3.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.4.設(shè)全集為R,集合,,則A. B. C. D.5.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對稱;②函數(shù)是周期函數(shù);③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號(hào)是()A.①④ B.②③ C.①③④ D.①②④6.已知銳角滿足則()A. B. C. D.7.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)P是C的右支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),,則雙曲線C的漸近線方程為()A. B. C. D.8.函數(shù)的大致圖象是()A. B.C. D.9.將函數(shù)的圖象沿軸向左平移個(gè)單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.11.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.12.若函數(shù)的圖象過點(diǎn),則它的一條對稱軸方程可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像與直線的三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別是,,,則實(shí)數(shù)的值為________.14.已知關(guān)于的不等式對于任意恒成立,則實(shí)數(shù)的取值范圍為_________.15.已知直角坐標(biāo)系中起點(diǎn)為坐標(biāo)原點(diǎn)的向量滿足,且,,,存在,對于任意的實(shí)數(shù),不等式,則實(shí)數(shù)的取值范圍是______.16.若函數(shù),其中且,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在矩形中,,,點(diǎn)分別是線段的中點(diǎn),分別將沿折起,沿折起,使得重合于點(diǎn),連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.18.(12分)已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值.19.(12分)已知矩形中,,E,F(xiàn)分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點(diǎn),連接.(1)求證:平面;(2)求二面角的余弦值.20.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.21.(12分)已知的內(nèi)角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個(gè)最大值,如果沒有,請說明理由.22.(10分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風(fēng)雨歷程,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機(jī)選取3人進(jìn)行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
作交于點(diǎn),根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點(diǎn),則,由題意,,,且,所以又,所以,,即,所以本題答案為A.本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.2.A【解析】
由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.本題考查等差數(shù)列基本量的計(jì)算,考查學(xué)生運(yùn)算求解能力,是一道基礎(chǔ)題.3.C【解析】
設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C此題考查異面直線夾角,關(guān)鍵點(diǎn)通過平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.4.B【解析】分析:由題意首先求得,然后進(jìn)行交集運(yùn)算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項(xiàng).點(diǎn)睛:本題主要考查交集的運(yùn)算法則,補(bǔ)集的運(yùn)算法則等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.5.A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯(cuò)誤;函數(shù)定義域?yàn)?,最值點(diǎn)即為極值點(diǎn),由知③錯(cuò)誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【詳解】由題意得:定義域?yàn)?,,為奇函?shù),圖象關(guān)于原點(diǎn)對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯(cuò)誤;,,不是最值,③錯(cuò)誤;令,當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.本題考查函數(shù)與導(dǎo)數(shù)知識(shí)的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個(gè)數(shù)問題的求解;本題綜合性較強(qiáng),對于學(xué)生的分析和推理能力有較高要求.6.C【解析】
利用代入計(jì)算即可.【詳解】由已知,,因?yàn)殇J角,所以,,即.故選:C.本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.7.C【解析】
利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程。【詳解】設(shè),,由,與相似,所以,即,又因?yàn)?,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。8.A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.本題考查了函數(shù)圖象,屬基礎(chǔ)題.9.A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達(dá)式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個(gè)單位長度,得到的圖象對應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當(dāng)時(shí),.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.本題考查充分不必要條件的判斷,同時(shí)也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力與推理能力,屬于中等題.10.A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.11.D【解析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對參數(shù)的值進(jìn)行檢驗(yàn),考查分析問題和解決問題的能力,屬于中等題.12.B【解析】
把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對稱軸.故選:B.本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
由題可分析函數(shù)與的三個(gè)相鄰交點(diǎn)中不相鄰的兩個(gè)交點(diǎn)距離為,即,進(jìn)而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的14.【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因?yàn)?,,對任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時(shí)等號(hào)成立,又因?yàn)樵趦?nèi)有解,,則,即:,所以實(shí)數(shù)的取值范圍:.故答案為:.本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計(jì)算能力.15.【解析】
由題意可設(shè),,,由向量的坐標(biāo)運(yùn)算,以及恒成立思想可設(shè),的最小值即為點(diǎn),到直線的距離,求得,可得不大于.【詳解】解:,且,可設(shè),,,,可得,可得的終點(diǎn)均在直線上,由于為任意實(shí)數(shù),可得時(shí),的最小值即為點(diǎn)到直線的距離,可得,對于任意的實(shí)數(shù),不等式,可得,故答案為:.本題主要考查向量的模的求法,以及兩點(diǎn)的距離的運(yùn)用,考查直線方程的運(yùn)用,以及點(diǎn)到直線的距離,考查運(yùn)算能力,屬于中檔題.16.【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.本題主要考查了二項(xiàng)式定理的應(yīng)用,以及導(dǎo)數(shù)的運(yùn)算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準(zhǔn)確求解導(dǎo)數(shù)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)根據(jù),,可得平面,故而平面平面.(Ⅱ)過作于,則可證平面,故為所求角,在中利用余弦定理計(jì)算,再計(jì)算.【詳解】解:(Ⅰ)因?yàn)椋?,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因?yàn)?,,,所以,從?本題考查了面面垂直的判定,考查直線與平面所成角的計(jì)算,屬于中檔題.18.(1)(2)4【解析】
(1)將點(diǎn)P橫坐標(biāo)代入拋物線中求得點(diǎn)P的坐標(biāo),利用點(diǎn)P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點(diǎn)坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計(jì)算的值即可.【詳解】(1)將點(diǎn)P橫坐標(biāo)代入中,求得,∴P(2,),,點(diǎn)P到準(zhǔn)線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點(diǎn)為F(0,1),準(zhǔn)線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應(yīng)用問題,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.19.(1)證明見解析(2)【解析】
(1)取中點(diǎn)R,連接,,可知中,且,由Q是中點(diǎn),可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點(diǎn)R,連接,,則在中,,且,又Q是中點(diǎn),所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點(diǎn)G,以E為原點(diǎn),,,分別為x,y,x軸,建立如圖所示的空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為,,,所以,,設(shè)平面的一個(gè)法向量為,則即,取,得,又平面的一個(gè)法向量為,所以.因此,二面角的余弦值為本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運(yùn)算求解能力,難度一般.20.(1).(2)答案見解析【解析】
(1)利用絕對值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時(shí),可通過執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.21.(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計(jì)算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質(zhì)計(jì)算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因?yàn)椋?(Ⅱ)當(dāng)時(shí),的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因?yàn)椋?,所以?dāng)即時(shí),取到最大值2,所以的周長有最大值,最大值為3.本題考查正弦定理、余弦定理解三角形,以及三角函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.22.(1)分布列見解析,(1)【解析】
(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機(jī)變量概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年二手車評估師考試準(zhǔn)備資料與答案
- 2024年小自考公共事業(yè)管理應(yīng)試技巧及答案
- 2024年古代文學(xué)史論點(diǎn)探討試題及答案
- 無領(lǐng)導(dǎo)討論組試題及答案
- 2024年新興汽車產(chǎn)業(yè)對維修工的影響試題及答案
- 2024年汽車維修工考試應(yīng)試策略試題及答案
- 透視古代文學(xué)史考試重要性試題及答案
- 2024年省考二手車售前檢查標(biāo)準(zhǔn)試題及答案
- 小學(xué)語文一年級考試的練習(xí)試題及答案
- 2024年汽車維修工考試實(shí)戰(zhàn)演練指導(dǎo)試題及答案
- 醫(yī)院品管圈(QCC)活動(dòng)成果報(bào)告書-基于QFD 潤心服務(wù)改善 ICU 患者及家屬就醫(yī)體驗(yàn)
- GB/T 16895.36-2024低壓電氣裝置第 7-722 部分:特殊裝置或場所的要求電動(dòng)車供電
- JJG 693-2011可燃?xì)怏w檢測報(bào)警器
- 小學(xué)特色課程《口風(fēng)琴課程》校本教材
- 人音版初中音樂 九年級上冊 中考一輪復(fù)習(xí)課件
- 鋼格構(gòu)柱組合式塔吊方案(專家認(rèn)證)
- 工程結(jié)算單(樣本)
- 康復(fù)治療師考試歷年真題附帶答案
- 完整欠條范本
- 巴厘島碼頭工程量清單
- plc泡沫塑料切片機(jī)自動(dòng)化設(shè)計(jì)
評論
0/150
提交評論