2022屆重慶市江北新區(qū)聯(lián)盟中考四模數(shù)學試題含解析_第1頁
2022屆重慶市江北新區(qū)聯(lián)盟中考四模數(shù)學試題含解析_第2頁
2022屆重慶市江北新區(qū)聯(lián)盟中考四模數(shù)學試題含解析_第3頁
2022屆重慶市江北新區(qū)聯(lián)盟中考四模數(shù)學試題含解析_第4頁
2022屆重慶市江北新區(qū)聯(lián)盟中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022屆重慶市江北新區(qū)聯(lián)盟中考四模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,數(shù)軸上的三點所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點的位置應該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊2.已知點、都在反比例函數(shù)的圖象上,則下列關系式一定正確的是()A. B. C. D.3.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.4.下列博物院的標識中不是軸對稱圖形的是()A. B.C. D.5.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.6.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.327.在﹣3,﹣1,0,1四個數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.18.已知關于x的不等式組至少有兩個整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個 B.5個 C.6個 D.7個9.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱10.某籃球運動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分二、填空題(共7小題,每小題3分,滿分21分)11.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是_____.12.分式方程-1=的解是x=________.13.計算兩個兩位數(shù)的積,這兩個數(shù)的十位上的數(shù)字相同,個位上的數(shù)字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發(fā)現(xiàn)上面每個數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結果的千位和百位,兩個個位數(shù)字相乘的積作為結果的,請寫出一個符合上述規(guī)律的算式.(2)設其中一個數(shù)的十位數(shù)字為a,個位數(shù)字為b,請用含a,b的算式表示這個規(guī)律.14.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).15.如圖是由6個棱長均為1的正方體組成的幾何體,它的主視圖的面積為_____.16.方程的兩個根為、,則的值等于______.17.的相反數(shù)是______.三、解答題(共7小題,滿分69分)18.(10分)太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.19.(5分)如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.20.(8分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.求該型號自行車的進價和標價分別是多少元?若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?21.(10分)如圖,已知:,,,求證:.22.(10分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側(cè)),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經(jīng)過點A時,“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.23.(12分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數(shù)圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.24.(14分)貨車行駛25與轎車行駛35所用時間相同.已知轎車每小時比貨車多行駛20,求貨車行駛的速度.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)絕對值是數(shù)軸上表示數(shù)的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,

∴點A到原點的距離最大,點C其次,點B最小,

又∵AB=BC,

∴原點O的位置是在點B、C之間且靠近點B的地方.

故選:C.【點睛】此題考查了實數(shù)與數(shù)軸,理解絕對值的定義是解題的關鍵.2、A【解析】分析:根據(jù)反比例函數(shù)的性質(zhì),可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內(nèi),y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數(shù),利用反比例函數(shù)的性質(zhì)是解題關鍵.3、B【解析】

先用含有x的式子表示2015年的綠化面積,進而用含有x的式子表示2016年的綠化面積,根據(jù)等式關系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點睛】本題主要考查一元二次方程的應用,找準其中的等式關系式解答此題的關鍵.4、A【解析】

如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進行分析即可.【詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】此題考查軸對稱圖形的概念,解題的關鍵在于利用軸對稱圖形的概念判斷選項正誤5、C【解析】

結合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關鍵.6、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.7、A【解析】

因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【詳解】因為正數(shù)是比0大的數(shù),負數(shù)是比0小的數(shù),正數(shù)比負數(shù)大;負數(shù)的絕對值越大,本身就越小,所以在-3,-1,0,1這四個數(shù)中比-2小的數(shù)是-3,故選A.【點睛】本題主要考查有理數(shù)比較大小,解決本題的關鍵是要熟練掌握比較有理數(shù)大小的方法.8、A【解析】

依據(jù)不等式組至少有兩個整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個,故選:A.【點睛】此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.9、A【解析】

側(cè)面為三個長方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.

故選A.【點睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關鍵..10、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).二、填空題(共7小題,每小題3分,滿分21分)11、25°.【解析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.12、-5【解析】兩邊同時乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,檢驗:當x=-5時,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案為:-5.【點睛】本題考查了解分式方程,解題的關鍵是方程兩邊同時乘以最簡公分母,切記要進行檢驗.13、(1)十位和個位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根據(jù)題意得出其一般性的規(guī)律,從而得出答案;(2)、利用代數(shù)式表示出其一般規(guī)律得出答案.詳解:(1)由已知等式知,每個數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結果的千位和百位,兩個個位數(shù)字相乘的積作為結果的十位和個位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點睛:本題主要考查的是規(guī)律的發(fā)現(xiàn)與整理,屬于基礎題型.找出一般性的規(guī)律是解決這個問題的關鍵.14、?!窘馕觥吭囶}分析:如圖,連接EG,∵,∴設,則?!唿cE是邊CD的中點,∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴?!唷!嘣赗t△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担??!?。15、1.【解析】

根據(jù)立體圖形畫出它的主視圖,再求出面積即可.【詳解】主視圖如圖所示,∵主視圖是由1個棱長均為1的正方體組成的幾何體,∴主視圖的面積為1×12=1.故答案為:1.【點睛】本題是簡單組合體的三視圖,主要考查了立體圖的左視圖,解本題的關鍵是畫出它的左視圖.16、1.【解析】

根據(jù)一元二次方程根與系數(shù)的關系求解即可.【詳解】解:根據(jù)題意得,,所以===1.故答案為1.【點睛】本題考查了根與系數(shù)的關系:若、是一元二次方程(a≠0)的兩根時,,.17、﹣.【解析】

根據(jù)只有符號不同的兩個數(shù)叫做互為相反數(shù)解答.【詳解】的相反數(shù)是.故答案為.【點睛】本題考查的知識點是相反數(shù),解題關鍵是熟記相反數(shù)的概念.三、解答題(共7小題,滿分69分)18、55米【解析】

由題意可知△EDC∽△EBA,△FHC∽△FBA,根據(jù)相似三角形的性質(zhì)可得,又DC=HG,可得,代入數(shù)據(jù)即可求得AC=106米,再由即可求得AB=55米.【詳解】∵△EDC∽△EBA,△FHC∽△FBA,,,,即,∴AC=106米,又,∴,∴AB=55米.答:舍利塔的高度AB為55米.【點睛】本題考查相似三角形的判定和性質(zhì)的應用,解題的關鍵是靈活運用所學知識解決問題,利用相似三角形的性質(zhì)建立方程解決問題.19、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(6,﹣14)(4,﹣5);(3).【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;

(2)根據(jù)垂線間的關系,可得PA,PB的解析式,根據(jù)解方程組,可得P點坐標;

(3)根據(jù)垂直于x的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得MQ,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得面積的最大值,根據(jù)三角形的底一定時面積與高成正比,可得三角形高的最大值【詳解】解:(1)將A,B點坐標代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯(lián)立PA與拋物線,得,解得(舍),,即P(6,﹣14);當PB⊥AB時,PB的解析式為y=﹣2x+3,聯(lián)立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(6,﹣14)(4,﹣5);(3)如圖:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.【點睛】本題考查了二次函數(shù)綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關鍵20、(1)進價為1000元,標價為1500元;(2)該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.【解析】分析:(1)設進價為x元,則標價是1.5x元,根據(jù)關鍵語句:按標價九折銷售該型號自行車8輛的利潤是1.5x×0.9×8-8x,將標價直降100元銷售7輛獲利是(1.5x-100)×7-7x,根據(jù)利潤相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到進價,進而得到標價;(2)設該型號自行車降價a元,利潤為w元,利用銷售量×每輛自行車的利潤=總利潤列出函數(shù)關系式,再利用配方法求最值即可.詳解:(1)設進價為x元,則標價是1.5x元,由題意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:進價為1000元,標價為1500元;(2)設該型號自行車降價a元,利潤為w元,由題意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,∵-<0,∴當a=80時,w最大=26460,答:該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.點睛:此題主要考查了二次函數(shù)的應用,以及元一次方程的應用,關鍵是正確理解題意,根據(jù)已知得出w與a的關系式,進而求出最值.21、證明見解析;【解析】

根據(jù)HL定理證明Rt△ABC≌Rt△DEF,根據(jù)全等三角形的性質(zhì)證明即可.【詳解】,BE為公共線段,∴CE+BE=BF+BE,即又,在與中,≌∴AC=DF.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關鍵.22、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解析】

(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數(shù)即可;②將y=3代入拋物線的解析式求得對應的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結合函數(shù)圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數(shù)解析式可求得點P的橫坐標.【詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖形”有3個交點,故答案為3;②將y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函數(shù)圖象可知:當0<t<1時,拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,故答案為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論