2022屆云南省師宗縣重點達標名校中考押題數(shù)學預測卷含解析_第1頁
2022屆云南省師宗縣重點達標名校中考押題數(shù)學預測卷含解析_第2頁
2022屆云南省師宗縣重點達標名校中考押題數(shù)學預測卷含解析_第3頁
2022屆云南省師宗縣重點達標名校中考押題數(shù)學預測卷含解析_第4頁
2022屆云南省師宗縣重點達標名校中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022屆云南省師宗縣重點達標名校中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣42.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點D是CB延長線上的一點,且BD=BA,則tan∠DAC的值為()A. B.2 C. D.33.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.4.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網(wǎng)絡上推出,即刻轉(zhuǎn)發(fā)量就超過810000這個數(shù)用科學記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1045.一元二次方程的根是()A. B.C. D.6.在海南建省辦經(jīng)濟特區(qū)30周年之際,中央決定創(chuàng)建海南自貿(mào)區(qū)(港),引發(fā)全球高度關注.據(jù)統(tǒng)計,4月份互聯(lián)網(wǎng)信息中提及“海南”一詞的次數(shù)約48500000次,數(shù)據(jù)48500000科學記數(shù)法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1087.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°8.若順次連接四邊形各邊中點所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對角線互相垂直的四邊形 D.對角線相等的四邊形9.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內(nèi)直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.10.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結(jié)論:①OA=OD;②AD⊥EF;③當∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)12.計算:=_______.13.21世紀納米技術將被廣泛應用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學記數(shù)法表示為_______米.14.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點D、E分別為AM、AB上的動點,則BD+DE的最小值是_____.15.已知:a(a+2)=1,則a2+=_____.16.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發(fā),沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內(nèi)滑動,設運動時間為秒,當?shù)竭_原點時停止運動連接,線段的長隨的變化而變化,當最大時,______.當?shù)倪吪c坐標軸平行時,______.三、解答題(共8題,共72分)17.(8分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.(1)問題發(fā)現(xiàn)①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉(zhuǎn)過程中,BE的最大值為;②當△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為.18.(8分)據(jù)報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學生會想知道學生對這個提議的了解程度,隨機抽取部分學生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有___名,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為___;請補全條形統(tǒng)計圖;(2)若該校共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總?cè)藬?shù);(3)“剪刀石頭布”比賽時雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.19.(8分)今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.(1)求B點到直線CA的距離;(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號)20.(8分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.21.(8分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.22.(10分)某品牌手機去年每臺的售價y(元)與月份x之間滿足函數(shù)關系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數(shù)關系,其中1﹣6月份的銷售情況如下表:月份(x)1月2月3月4月5月6月銷售量(p)3.9萬臺4.0萬臺4.1萬臺4.2萬臺4.3萬臺4.4萬臺(1)求p關于x的函數(shù)關系式;(2)求該品牌手機在去年哪個月的銷售金額最大?最大是多少萬元?(3)今年1月份該品牌手機的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對該手機以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機的銷售額為6400萬元,求m的值.23.(12分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標;(2)若直線EF的解析式為y=3(3)若雙曲線y=k24.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

利用待定系數(shù)法求出m,再結(jié)合函數(shù)的性質(zhì)即可解決問題.【詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點睛】本題考查待定系數(shù)法,一次函數(shù)的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.2、A【解析】

設AC=a,由特殊角的三角函數(shù)值分別表示出BC、AB的長度,進而得出BD、CD的長度,由公式求出tan∠DAC的值即可.【詳解】設AC=a,則BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故選A.【點睛】本題主要考查特殊角的三角函數(shù)值.3、B【解析】

先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.4、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】810000=8.1×1.

故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.6、C【解析】

依據(jù)科學記數(shù)法的含義即可判斷.【詳解】解:48511111=4.85×117,故本題選擇C.【點睛】把一個數(shù)M記成a×11n(1≤|a|<11,n為整數(shù))的形式,這種記數(shù)的方法叫做科學記數(shù)法.規(guī)律:(1)當|a|≥1時,n的值為a的整數(shù)位數(shù)減1;(2)當|a|<1時,n的值是第一個不是1的數(shù)字前1的個數(shù),包括整數(shù)位上的1.7、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.8、C【解析】【分析】如圖,根據(jù)三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【點睛】如圖,∵E,F(xiàn),G,H分別是邊AD,DC,CB,AB的中點,∴EH=AC,EH∥AC,F(xiàn)G=AC,F(xiàn)G∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【點睛】本題考查了中點四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識,熟練掌握和靈活運用相關性質(zhì)進行推理是解此題的關鍵.9、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.10、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③④【解析】試題解析:根據(jù)已知條件不能推出OA=OD,∴①錯誤;∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正確;∵∠BAC=90°,∠AED=∠AFD=90°,∴四邊形AEDF是矩形,∵AE=AF,∴四邊形AEDF是正方形,∴③正確;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正確;∴②③④正確,12、3【解析】

先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點睛】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行然后合并同類二次根式.13、1.2×10﹣1.【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10?n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10?n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.14、8【解析】試題分析:過B點作于點,與交于點,根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點作于點,與交于點,設AF=x,,,,(負值舍去).故BD+DE的值是8故答案為8考點:軸對稱-最短路線問題.15、3【解析】

先根據(jù)a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點睛】本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關鍵.16、4【解析】

(1)由等腰三角形的性質(zhì)可得AD=BD,從而可求出OD=4,然后根據(jù)當O,D,C共線時,OC取最大值求解即可;(2)根據(jù)等腰三角形的性質(zhì)求出CD,分AC∥y軸、BC∥x軸兩種情況,根據(jù)相似三角形的判定定理和性質(zhì)定理列式計算即可.【詳解】(1),,當O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,

則當t=或時,△ABC的邊與坐標軸平行.

故答案為t=或.【點睛】本題考查的是直角三角形的性質(zhì),等腰三角形的性質(zhì),相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理、靈活運用分情況討論思想是解題的關鍵.三、解答題(共8題,共72分)17、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解析】

(1)①先判斷出DE∥CB,進而得出比例式,代值即可得出結(jié)論;②先得出DE∥BC,即可得出,,再用比例的性質(zhì)即可得出結(jié)論;(2)先∠CAD=∠BAE,進而判斷出△ADC∽△AEB即可得出結(jié)論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結(jié)論即可得出CD.【詳解】解:(1)①當θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據(jù)勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據(jù)勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【點睛】此題是相似形綜合題,主要考查了等腰直角三角形的性質(zhì)和判定,勾股定理,相似三角形的判定和性質(zhì),比例的基本性質(zhì)及分類討論的數(shù)學思想,解(1)的關鍵是得出DE∥BC,解(2)的關鍵是判斷出△ADC∽△AEB,解(3)關鍵是作出圖形求出BD,是一道中等難度的題目.18、(1)60;90°;統(tǒng)計圖詳見解析;(2)300;(3).【解析】試題分析:(1)由“了解很少”的人數(shù)除以占的百分比得出學生總數(shù),求出“基本了解”的學生占的百分比,乘以360得到結(jié)果,補全條形統(tǒng)計圖即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到結(jié)果;(3)列表得出所有等可能的情況數(shù),找出兩人打平的情況數(shù),即可求出所求的概率.試題解析:(1)根據(jù)題意得:30÷50%=60(名),“了解”人數(shù)為60﹣(15+30+10)=5(名),“基本了解”占的百分比為×100%=25%,占的角度為25%×360°=90°,補全條形統(tǒng)計圖如圖所示:(2)根據(jù)題意得:900×=300(人),則估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總?cè)藬?shù)為300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情況有9種,其中兩人打平的情況有3種,則P==.考點:1、條形統(tǒng)計圖,2、扇形統(tǒng)計圖,3、列表法與樹狀圖法19、(1)B點到直線CA的距離是75海里;(2)執(zhí)法船從A到D航行了(75﹣25)海里.【解析】

(1)過點B作BH⊥CA交CA的延長線于點H,根據(jù)三角函數(shù)可求BH的長;(2)根據(jù)勾股定理可求DH,在Rt△ABH中,根據(jù)三角函數(shù)可求AH,進一步得到AD的長.【詳解】解:(1)過點B作BH⊥CA交CA的延長線于點H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B點到直線CA的距離是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:執(zhí)法船從A到D航行了(75﹣25)海里.【點睛】本題主要考查了勾股定理的應用,解直角三角形的應用-方向角問題.能合理構造直角三角形,并利用方向角求得三角形內(nèi)角的大小是解決此題的關鍵.20、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行合理變形,解決相似三角形問題時要注意分類討論.21、(1)-7;(2),.【解析】

(1)原式第一項利用算術平方根定義計算,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結(jié)果;

(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,利用非負數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點睛】本題考查了實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值,解題的關鍵是熟練的掌握實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值的運用.22、(1)p=0.1x+3.8;(2)該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3)m的值為1.【解析】

(1)直接利用待定系數(shù)法求一次函數(shù)解析式即可;(2)利用銷量×售價=銷售金額,進而利用二次函數(shù)最值求法求出即可;(3)分別表示出1,2月份的銷量以及售價,進而利用今年2月份這種品牌手機的銷售額為6400萬元,得出等式求出即可.【詳解】(1)設p=kx+b,把p=3.9,x=1;p=4.0,x=2分別代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)設該品牌手機在去年第x個月的銷售金額為w萬元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,當x=7時,w最大=10125,答:該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3)當x=12時,y=100,p=5,1月份的售價為:100(1﹣m%)元,則2月份的售價為:0.8×100(1﹣m%)元;1月份的銷量為:5×(1﹣1.5m%)萬臺,則2月份的銷量為:[5×(1﹣1.5m%)+1.5]萬臺;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=1,答:m的值為1.【點睛】此題主要考查了二次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,根據(jù)題意表示出2月份的銷量與售價是解題關鍵.23、(1)E(-3,4)、F(-5,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論