




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆山東省淄博市周村縣中考數學押題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉180°,得到△BP2C;把△BP2C繞點C順時針旋轉180°,得到△CP3D,依此類推,則旋轉第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)2.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.3.下列運算正確的是()A.2+a=3 B.=C. D.=4.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.35.圖中三視圖對應的正三棱柱是()A. B. C. D.6.世界上最小的開花結果植物是澳大利亞的出水浮萍,這種植物的果實像一個微小的無花果,質量只有0.0000000076克,將數0.0000000076用科學記數法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×1087.小軍旅行箱的密碼是一個六位數,由于他忘記了密碼的末位數字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.8.已知反比例函數y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣29.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當C在⊙O上運動時,點P的位置()
A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定10.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.12.從﹣2,﹣1,2這三個數中任取兩個不同的數相乘,積為正數的概率是_____.13.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結論的個數是______.14.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.15.若,則=_____.16.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.三、解答題(共8題,共72分)17.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.18.(8分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉過程中,當∠OAG′是直角時,求α的度數;②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.19.(8分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).20.(8分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當AP的值為時,四邊形PBEC是矩形;②當AP的值為時,四邊形PBEC是菱形.21.(8分)先化簡,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.22.(10分)計算:4cos30°﹣+20180+|1﹣|23.(12分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.24.甲、乙、丙3名學生各自隨機選擇到A、B2個書店購書.(1)求甲、乙2名學生在不同書店購書的概率;(2)求甲、乙、丙3名學生在同一書店購書的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據題意可以求得P1,點P2,點P3的坐標,從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標,本題得以解決.【詳解】解:由題意可得,
點P1(1,1),點P2(3,-1),點P3(5,1),
∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,
即P2018的坐標為(4035,-1),
故選:D.【點睛】本題考查了點的坐標變化規(guī)律,解答本題的關鍵是發(fā)現(xiàn)各點的變化規(guī)律,求出相應的點的坐標.2、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據勾股定理得到AF===,根據平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線3、D【解析】
根據整式的混合運算計算得到結果,即可作出判斷.【詳解】A、2與a不是同類項,不能合并,不符合題意;B、=,不符合題意;C、原式=,不符合題意;D、=,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.4、C【解析】
連接EG、FG,根據斜邊中線長為斜邊一半的性質即可求得EG=FG=BC,因為D是EF中點,根據等腰三角形三線合一的性質可得GD⊥EF,再根據勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質、勾股定理以及等腰三角形三線合一的性質,本題中根據等腰三角形三線合一的性質求得GD⊥EF是解題的關鍵.5、A【解析】
由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,從而求解【詳解】解:由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側棱在正前方,于是可判定A選項正確.故選A.【點睛】本題考查由三視圖判斷幾何體,掌握幾何體的三視圖是本題的解題關鍵.6、A【解析】
絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:將0.0000000076用科學計數法表示為.故選A.【點睛】本題考查了用科學計數法表示較小的數,一般形式為a×,其中,n為由原數左邊起第一個不為0的數字前面的0的個數所決定.7、A【解析】∵密碼的末位數字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數字時,要一次能打開的概率是.故選A.8、D【解析】
根據反比例函數的性質可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數y=﹣,∴在每個象限內,y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數的性質,解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數的性質解答.9、B【解析】
因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴點P是線段AB垂直平分線和圓的交點,
∴當C在⊙O上運動時,點P不動.
故選:B.【點睛】本題考查了圓心角、弦、弧之間的關系,以及平行線的判定和性質,在同圓或等圓中,等弧對等弦.10、B【解析】∵四邊形AECD是平行四邊形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等邊三角形,
∴∠B=60°,∴的弧長=.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.12、【解析】
首先根據題意列出表格,然后由表格即可求得所有等可能的結果與積為正數的情況,再利用概率公式求解即可求得答案.【詳解】列表如下:﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6種等可能結果,其中積為正數的有2種結果,所以積為正數的概率為,故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.13、①②③④.【解析】
由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;
由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,F(xiàn)G⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD?FE=AD2=FQ?AC,④正確;
故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質、矩形的判定與性質、等腰直角三角形的性質;熟練掌握正方形的性質,證明三角形全等和三角形相似是解決問題的關鍵.14、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數與一次函數的交點問題;軸對稱-最短路線問題.15、【解析】=.16、+1【解析】
根據對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負根已經舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.三、解答題(共8題,共72分)17、(30+30)米.【解析】
解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米18、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】
(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當旋轉到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+1,此時α=315°.【詳解】(1)如圖1,延長ED交AG于點H,∵點O是正方形ABCD兩對角線的交點,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(1)①在旋轉過程中,∠OAG′成為直角有兩種情況:(Ⅰ)α由0°增大到90°過程中,當∠OAG′=90°時,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°°,即α=30°;(Ⅱ)α由90°增大到180°過程中,當∠OAG′=90°時,同理可求∠BOG′=30°,∴α=180°?30°=150°.綜上所述,當∠OAG′=90°時,α=30°或150°.②如圖3,當旋轉到A.
O、F′在一條直線上時,AF′的長最大,∵正方形ABCD的邊長為1,∴OA=OD=OC=OB=,∵OG=1OD,∴OG′=OG=,∴OF′=1,∴AF′=AO+OF′=+1,∵∠COE′=45°,∴此時α=315°.【點睛】本題考查的是正方形的性質、旋轉變換的性質以及銳角三角函數的定義,掌握正方形的四條邊相等、四個角相等,旋轉變換的性質是解題的關鍵,注意特殊角的三角函數值的應用.19、100米.【解析】【分析】如圖,作PC⊥AB于C,構造出Rt△PAC與Rt△PBC,求出AB的長度,利用特殊角的三角函數值進行求解即可得.【詳解】如圖,過P點作PC⊥AB于C,由題意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=PC+PC=10×40=400,∴PC=100,答:建筑物P到賽道AB的距離為100米.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構造直角三角形,利用特殊角的三角函數值進行解答是關鍵.20、證明見解析;(2)①9;②12.5.【解析】
(1)根據對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點D是BC的中點,∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當∠APC=90°時,四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當AP的值為9時,四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當PC=PB時,四邊形PBEC是菱形,此時點P為AB的中點,所以AP=12.5,∴當AP的值為12.5時,四邊形PBEC是菱形.【點睛】本題考查了菱形的判定、平行四邊形的判定和性質、矩形的判定,解題的關鍵是掌握特殊圖形的判定以及重要的性質.21、2x2﹣7xy,1【解析】
根據完全平方公式及多項式的乘法法則展開,然后合并同類項進行化簡,然后把x、y的值代入求值即可.【詳解】原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,當x=5,y=時,原式=50﹣7=1.【點睛】完全平方公式和多項式的乘法法則是本題的考點,能夠正確化簡多項式是解題的關鍵.22、【解析】
先代入三角函數值、化簡二次根式、計算零指數冪、取絕對值符號,再計算乘法,最后計算加減可得.【詳解】原式===【點睛】本題主要考查實數的混合運算,解題的關鍵是熟練掌握實數的混合運算順序和運算法則及零指數冪、絕對值和二次根式的性質.23、(1)A(,0)、B(3,0).(2)存在.S△PBC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 長江師范學院《管理技能與創(chuàng)新實踐》2023-2024學年第二學期期末試卷
- 桂林旅游學院《微機原理與接口技術(3)》2023-2024學年第二學期期末試卷
- 蘇州城市學院《書法(一)》2023-2024學年第二學期期末試卷
- 東華理工大學《汽車發(fā)展史》2023-2024學年第二學期期末試卷
- 2025屆四川省新高考教研聯(lián)盟高三上學期八省適應性聯(lián)考模擬演練考試(二)歷史試卷
- 合肥城市學院《建筑施工安全》2023-2024學年第二學期期末試卷
- 2024-2025學年上海市松江區(qū)高三上學期期末質量監(jiān)控考試歷史試卷
- 長春大學旅游學院《高分子材料改性原理及技術》2023-2024學年第二學期期末試卷
- 林州建筑職業(yè)技術學院《化工制圖與AutoCAD》2023-2024學年第二學期期末試卷
- 華東交通大學《中國現(xiàn)當代文學二》2023-2024學年第二學期期末試卷
- 2025年湖北省技能高考(建筑技術類)《建筑構造》模擬練習試題庫(含答案)
- 2025年度養(yǎng)老服務機構場地租賃合同及養(yǎng)老服務協(xié)議
- 貴州省情知識考試題庫500題(含答案)
- 大學生家長陪讀承諾書
- 安全生產事故調查與案例分析(第3版)課件 呂淑然 第5章 事故案例評析
- 2023版交安A、B、C證考試題庫含答案
- 樓梯 欄桿 欄板(一)22J403-1
- 勞動法培訓課件
- 2024-2025學年成都市成華區(qū)七年級上英語期末考試題(含答案)
- 2024年05月青海青海省農商銀行(農信社)系統(tǒng)招考專業(yè)人才筆試歷年參考題庫附帶答案詳解
- 2025年山西杏花村汾酒集團限責任公司人才招聘71名高頻重點提升(共500題)附帶答案詳解
評論
0/150
提交評論