版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學年浙江省湖州市高中聯(lián)盟高三下學期期末數(shù)學試題數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.2.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.3.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.4.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.5.設向量,滿足,,,則的取值范圍是A. B.C. D.6.圓心為且和軸相切的圓的方程是()A. B.C. D.7.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.8.已知實數(shù)集,集合,集合,則()A. B. C. D.9.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.10.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.11.函數(shù)(且)的圖象可能為()A. B. C. D.12.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.14.在平面直角坐標系中,若函數(shù)在處的切線與圓存在公共點,則實數(shù)的取值范圍為_____.15.若,,則___________.16.直線過圓的圓心,則的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.18.(12分)某企業(yè)原有甲、乙兩條生產(chǎn)線,為了分析兩條生產(chǎn)線的效果,先從兩條生產(chǎn)線生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值.該項指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.乙生產(chǎn)線樣本的頻數(shù)分布表質(zhì)量指標合計頻數(shù)2184814162100(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,以從樣本中任意抽取一件產(chǎn)品且為合格品的頻率近似代替從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任意抽取一件產(chǎn)品且為合格品的概率,估計從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件恰有2件為合格品的概率;(2)現(xiàn)在該企業(yè)為提高合格率欲只保留其中一條生產(chǎn)線,根據(jù)上述圖表所提供的數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與生產(chǎn)線有關(guān)?若有90%把握,請從合格率的角度分析保留哪條生產(chǎn)線較好?甲生產(chǎn)線乙生產(chǎn)線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87919.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數(shù)根,且,證明:.20.(12分)已知函數(shù).(1)若在處導數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.21.(12分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.22.(10分)曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線,的交點分別為、(、異于原點),當斜率時,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.2.A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。3.C【解析】
對此分段函數(shù)的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經(jīng)單調(diào)性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應極值,,∴故選:C本題考查基本函數(shù)極值的求解,從函數(shù)表達式中抽離出相應的等差數(shù)列和等比數(shù)列,最后分組求和,要求學生對數(shù)列和函數(shù)的熟悉程度高,為中檔題4.A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A此題考查三棱錐的外接球表面積,關(guān)鍵點是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.5.B【解析】
由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.本題考查向量的數(shù)量積,考查模長公式,準確計算是關(guān)鍵,是基礎題.6.A【解析】
求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.7.B【解析】
由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計算,屬于基礎題.8.A【解析】
可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A本題考查了集合的補集和交集的混合運算,屬于基礎題.9.B【解析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.10.D【解析】
設點,由,得關(guān)于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.11.D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.12.C【解析】
畫出圖形,以為基底將向量進行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.本題考查利用導數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.14.【解析】
利用導數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.本題主要考查了導數(shù)的幾何意義求解切線方程的問題,同時也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎題.15.【解析】
因為,所以,又,所以,則,所以.16.【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.本題考查了圓的標準方程、“乘1法”和基本不等式的性質(zhì),屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實數(shù)a的取值范圍為試題解析:(I)當時,化為,當時,不等式化為,無解;當時,不等式化為,解得;當時,不等式化為,解得.所以的解集為.(II)由題設可得,所以函數(shù)的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設得,故.所以a的取值范圍為18.(1)0.0081(2)見解析,保留乙生產(chǎn)線較好.【解析】
(1)先求出任取一件產(chǎn)品為合格品的頻率,“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,恰好發(fā)生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據(jù)甲生產(chǎn)線樣本的頻率分布直方圖,樣本中任取一件產(chǎn)品為合格品的頻率為:.設“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取一件且為合格品”為事件,事件發(fā)生的概率為,則由樣本可估計.那么“從甲生產(chǎn)線生產(chǎn)的產(chǎn)品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,事件恰好發(fā)生2次,其概率為:.(2)列聯(lián)表:甲生產(chǎn)線乙生產(chǎn)線合計合格品9096186不合格品10414合計100100200的觀測值,∵,,∴有90%把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與生產(chǎn)線有關(guān).由(1)知甲生產(chǎn)線的合格率為0.9,乙生產(chǎn)線的合格率為,∵,∴保留乙生產(chǎn)線較好.此題考查獨立重復性檢驗二項分布概率,獨立性檢驗等知識點,認準特征代入公式即可,屬于較易題目.19.(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】
(Ⅰ)根據(jù)導數(shù)的幾何意義求解即可.(Ⅱ)求導分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點處的切線方程為.(Ⅱ)設恒成立,故.設函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當時,此時,且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當時,此時有解,且在上單調(diào)遞減,與矛盾;當時,此時有解,且在上單調(diào)遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因為,,故設的解為,因為,故.所以在遞減,在遞增.因為方程有兩個實數(shù)根,故.結(jié)合(Ⅰ)(Ⅱ)有,在上恒成立.設的解為,則;設的解為,則.故,.故,得證.本題主要考查了導數(shù)的幾何意義以及根據(jù)函數(shù)的單調(diào)性與最值求解參數(shù)值的問題.同時也考查了構(gòu)造函數(shù)結(jié)合前問的結(jié)論證明不等式的方法.屬于難題.20.(I)見解析(II)【解析】
(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導數(shù)相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,,利用導數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得本題考查函數(shù)的單調(diào)性,導數(shù)的運算及其應用,同時考查邏輯思維能力和綜合應用能力屬難題.21.(1)或(2)證明見解析【解析】
(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當時,恒成立,解得;當時,由,解得;當時,由解得所以的解集為或(2)由(1)可求得最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國鐵路北京局集團限公司招聘普通高校畢業(yè)生868人(二)高頻重點提升(共500題)附帶答案詳解
- 2025中國聯(lián)通廣西分公司招聘97人高頻重點提升(共500題)附帶答案詳解
- 2025中國神華系統(tǒng)內(nèi)招聘擬錄取人員高頻重點提升(共500題)附帶答案詳解
- 2025中國電信福建公司春季招聘148人高頻重點提升(共500題)附帶答案詳解
- 2025中國旅游集團戰(zhàn)略發(fā)展部副總經(jīng)理公開招聘1人高頻重點提升(共500題)附帶答案詳解
- 2025中國南水北調(diào)集團新能源投資限公司下屬經(jīng)營區(qū)域招聘5人高頻重點提升(共500題)附帶答案詳解
- 2025中國人民財產(chǎn)保險股份限公司自貢市分公司招聘5人(四川)高頻重點提升(共500題)附帶答案詳解
- 2025中共聊城市委組織部所屬事業(yè)單位公開招聘(2025年)高頻重點提升(共500題)附帶答案詳解
- 2025下半年陜西渭南市事業(yè)單位招聘599名高頻重點提升(共500題)附帶答案詳解
- 2025下半年湖北神農(nóng)架事業(yè)單位聯(lián)考筆試高頻重點提升(共500題)附帶答案詳解
- 普通銑床操作規(guī)程
- 導尿管相關(guān)尿路感染防控措施實施情況督查表
- 三甲醫(yī)院評審護理院感組專家現(xiàn)場訪談問題梳理(護士)
- 家庭、私有制和國家的起源
- 中職《數(shù)學》課程思政教學案例(一等獎)
- 水庫移民安置檔案分類大綱與編號方案
- GA 1802.2-2022生物安全領(lǐng)域反恐怖防范要求第2部分:病原微生物菌(毒)種保藏中心
- 企業(yè)EHS風險管理基礎智慧樹知到答案章節(jié)測試2023年華東理工大學
- 《解放戰(zhàn)爭》(共48張PPT)
- 借調(diào)人員年終總結(jié)模板【5篇】
- GB 1886.342-2021食品安全國家標準食品添加劑硫酸鋁銨
評論
0/150
提交評論