四川省三臺中學2025年高考復習全程精練模擬卷(全國I卷)數(shù)學試題含解析_第1頁
四川省三臺中學2025年高考復習全程精練模擬卷(全國I卷)數(shù)學試題含解析_第2頁
四川省三臺中學2025年高考復習全程精練模擬卷(全國I卷)數(shù)學試題含解析_第3頁
四川省三臺中學2025年高考復習全程精練模擬卷(全國I卷)數(shù)學試題含解析_第4頁
四川省三臺中學2025年高考復習全程精練模擬卷(全國I卷)數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省三臺中學2025年高考復習全程精練模擬卷(全國I卷)數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.2.已知,其中是虛數(shù)單位,則對應的點的坐標為()A. B. C. D.3.已知實數(shù),則的大小關系是()A. B. C. D.4.“哥德巴赫猜想”是近代三大數(shù)學難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學家哥德巴赫提出的,我國數(shù)學家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質數(shù)的概率為()A. B. C. D.5.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.406.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,7.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則的值為()A.2 B.3 C.4 D.8.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.9.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.10.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.11.造紙術、印刷術、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人12.已知,且,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.14.已知,,其中,為正的常數(shù),且,則的值為_______.15.(5分)有一道描述有關等差與等比數(shù)列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數(shù)列,后三個和尚的身高依次成等比數(shù)列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.16.設滿足約束條件,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,D,E分別為AB,BC的中點.(1)證明:平面平面;(2)求點到平面的距離.18.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)等比數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.20.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項和為,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和,求.21.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.22.(10分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎題.2.C【解析】

利用復數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.本題考查復數(shù)的代數(shù)表示法及其幾何意義,考查復數(shù)相等的條件,是基礎題.3.B【解析】

根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.4.A【解析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.本題主要考查了古典概型,基本事件,屬于容易題.5.D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數(shù)項=80,由5-2r=-1得r=3,對應的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=406.D【解析】

由題意結合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點,,則故選本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標求出結果7.B【解析】

因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關于對稱,由,得,,即,又,.故選:B.本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎題.8.D【解析】

設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.9.C【解析】

根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎題.10.A【解析】

由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.11.D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D本小題主要考查利用樣本估計總體,屬于基礎題.12.A【解析】

由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.本題考查三角函數(shù)誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關于x軸對稱,所以圓心E在x軸上,設圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉化與化歸思想,本題關鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.14.【解析】

把已知等式變形,展開兩角和與差的三角函數(shù),結合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.本題考查兩角和與差的三角函數(shù),考查數(shù)學轉化思想方法,屬于中檔題.15.【解析】

依題意設前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數(shù)列,則公比,故.16.【解析】

作出可行域,將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當時,z=0;當時將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:本題考查分式型目標函數(shù)的線性規(guī)劃問題,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)通過證明面,即可由線面垂直推證面面垂直;(2)根據(jù)面,將問題轉化為求到面的距離,利用等體積法求點面距離即可.【詳解】(1)因為棱柱是直三棱柱,所以又,所以面又,分別為AB,BC的中點所以//即面又面,所以平面平面(2)由(1)可知////所以//平面即點到平面的距離等于點到平面的距離設點到面的距離為由(1)可知,面且在中,,易知由等體積公式可知即由得所以到平面的距離等于本題考查由線面垂直推證面面垂直,涉及利用等體積法求點面距離,屬綜合中檔題.18.(1)見解析,(2)【解析】

(1)根據(jù)等差中項的定義得,然后構造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.考查等差中項的定義和分組求和的方法;中檔題.19.(Ⅰ)或(Ⅱ)12【解析】

(1)先設數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項公式;(2)根據(jù)(1)的結果,由等比數(shù)列的求和公式,即可求出結果.【詳解】(1)設數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.本題主要考查等比數(shù)列,熟記等比數(shù)列的通項公式與求和公式即可,屬于基礎題型.20.(1),;(2).【解析】

(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數(shù)項分一組用裂項相消法求和,偶數(shù)項分一組用等比數(shù)列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時,,為偶數(shù)時,,∴.本題考查求等差數(shù)列和等比數(shù)列的通項公式,考查分組求和法及裂項相消法、等差數(shù)列與等比數(shù)列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數(shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.21.(1);(2)見解析【解析】

(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當與軸垂直時,設直線的方程為:,與橢圓聯(lián)立求得的坐標,通過、斜率之積為列方程可得的值,進而可得的面積;當與軸不垂直時,設,,的方程為,與橢圓方程聯(lián)立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論