




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)滿足,則()A. B. C. D.2.偶函數(shù)關(guān)于點(diǎn)對稱,當(dāng)時,,求()A. B. C. D.3.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.4.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊(duì)每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊(duì)得分的中位數(shù)是86,乙隊(duì)得分的平均數(shù)是88,則()A.170 B.10 C.172 D.125.?dāng)?shù)列滿足:,則數(shù)列前項(xiàng)的和為A. B. C. D.6.如圖,矩形ABCD中,,,E是AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立7.已知函數(shù),若函數(shù)的所有零點(diǎn)依次記為,且,則()A. B. C. D.8.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i9.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.10.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.11.在正方體中,點(diǎn)、分別為、的中點(diǎn),過點(diǎn)作平面使平面,平面若直線平面,則的值為()A. B. C. D.12.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.春天即將來臨,某學(xué)校開展以“擁抱春天,播種綠色”為主題的植物種植實(shí)踐體驗(yàn)活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨(dú)立.該學(xué)校的某班隨機(jī)領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.14.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則15.已知點(diǎn)P是直線y=x+1上的動點(diǎn),點(diǎn)Q是拋物線y=x2上的動點(diǎn).設(shè)點(diǎn)M為線段PQ的中點(diǎn),O為原點(diǎn),則16.已知函數(shù),若關(guān)于x的方程有且只有兩個不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.18.(12分)在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點(diǎn).(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點(diǎn)的極坐標(biāo)為,,求的值.19.(12分)在中,設(shè)、、分別為角、、的對邊,記的面積為,且.(1)求角的大小;(2)若,,求的值.20.(12分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點(diǎn)的直角坐標(biāo).21.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時的值22.(10分)已知數(shù)列和,前項(xiàng)和為,且,是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.2.D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.3.A【解析】
先化簡求出,即可求得答案.【詳解】因?yàn)椋运怨蔬x:A【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算,注意計(jì)算的準(zhǔn)確度,屬于簡單題目.4.D【解析】
中位數(shù)指一串?dāng)?shù)據(jù)按從小(大)到大(?。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.5.A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項(xiàng)的和為,故選A.點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計(jì)算結(jié)果錯誤.6.A【解析】
作出二面角的補(bǔ)角、線面角、線線角的補(bǔ)角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點(diǎn)睛】本題考查了折疊問題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題.7.C【解析】
令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點(diǎn)睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點(diǎn)是將所求的式子拆分為的形式.8.A【解析】
由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點(diǎn)睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.9.A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點(diǎn),即可對選項(xiàng)逐個驗(yàn)證即可得出.【詳解】首先對4個選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項(xiàng),對其在上的零點(diǎn)個數(shù)進(jìn)行判斷,在上無零點(diǎn),不符合題意,排除D;然后,對剩下的2個選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.10.D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.11.B【解析】
作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.【點(diǎn)睛】本題考查線段長度比值的計(jì)算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.12.C【解析】
分四類情況進(jìn)行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點(diǎn),即沒有零點(diǎn),所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點(diǎn)對稱,則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點(diǎn)睛】本題考查二項(xiàng)分布的實(shí)際應(yīng)用,考查分析問題解決問題的能力,考查計(jì)算能力,屬于中檔題.14.3【解析】
先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標(biāo)函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點(diǎn)A(12,z在點(diǎn)A處有最小值:z=2×1故答案為:32【點(diǎn)睛】本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合,結(jié)合目標(biāo)函數(shù)的幾何意義是解決此類問題的基本方法.15.3【解析】
過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當(dāng)直線相切時距離最小,計(jì)算得到答案.【詳解】如圖所示:過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點(diǎn)M為線段PQ的中點(diǎn),故M在直線y=x+38時距離最小,故故答案為:32【點(diǎn)睛】本題考查了拋物線中距離的最值問題,轉(zhuǎn)化為切線問題是解題的關(guān)鍵.16.【解析】
畫出函數(shù)的圖象,再畫的圖象,求出一個交點(diǎn)時的的值,然后平行移動可得有兩個交點(diǎn)時的的范圍.【詳解】函數(shù)的圖象如圖所示:因?yàn)榉匠逃星抑挥袃蓚€不相等的實(shí)數(shù)根,所以圖象與直線有且只有兩個交點(diǎn)即可,當(dāng)過點(diǎn)時兩個函數(shù)有一個交點(diǎn),即時,與函數(shù)有一個交點(diǎn),由圖象可知,直線向下平移后有兩個交點(diǎn),可得,故答案為:.【點(diǎn)睛】本題主要考查了方程的跟與函數(shù)的圖象交點(diǎn)的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析(3)證明見解析【解析】
(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可得到結(jié)論.【詳解】(1),即,化簡可得.令,,因?yàn)椋裕?所以,在上單調(diào)遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設(shè),則.在上,,所以在上單調(diào)遞減.在上,,所以在上單調(diào)遞增,所以.設(shè),因?yàn)樵谏鲜菧p函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實(shí)根為,即,要證,由可知,即要證.當(dāng)時,,,因而在上單調(diào)遞增.當(dāng)時,,,因而在上單調(diào)遞減.因?yàn)椋?,要證.即要證.記,.因?yàn)?,所以,則..設(shè),,當(dāng)時,.時,,故.且,故,因?yàn)?,所?因此,即在上單調(diào)遞增.所以,即.故得證.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性、最值、函數(shù)恒成立問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,構(gòu)造函數(shù)研究單調(diào)性,屬于難題.18.(1)曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用即可得曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由,得,所以曲線的直角坐標(biāo)方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡、整理,得.因?yàn)橹本€與曲線交于,兩點(diǎn).所以,解得.由根與系數(shù)的關(guān)系,得,.因?yàn)辄c(diǎn)的直角坐標(biāo)為,在直線上.所以,解得,此時滿足.且,故..【點(diǎn)睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問題.19.(1);(2)【解析】
(1)由三角形面積公式,平面向量數(shù)量積的運(yùn)算可得,結(jié)合范圍,可求,進(jìn)而可求的值.(2)利用同角三角函數(shù)基本關(guān)系式可求,利用兩角和的正弦函數(shù)公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因?yàn)椋?,可得:.?)中,,所以.所以:,由正弦定理,得,解得,【點(diǎn)睛】本題主要考查了三角形面積公式,平面向量數(shù)量積的運(yùn)算,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20.【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因?yàn)?,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點(diǎn)坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級數(shù)學(xué)北師大版上冊 第十單元《總復(fù)習(xí)》教學(xué)設(shè)計(jì) 教案
- 2025年度五金建材電商運(yùn)營與推廣合作協(xié)議
- 2025年人美容院與美容護(hù)膚學(xué)校實(shí)習(xí)合作合同
- 2025年中冷器項(xiàng)目可行性研究報(bào)告
- 寵物店裝修保修協(xié)議樣本
- 2025年度股權(quán)退出與創(chuàng)業(yè)投資風(fēng)險(xiǎn)控制合作協(xié)議
- 2025年度培訓(xùn)機(jī)構(gòu)與學(xué)校教育資源共享與市場拓展合作協(xié)議
- 2025年度公司員工技術(shù)合作開發(fā)合伙協(xié)議
- 買房合同買房合同范本
- 2025年度健康養(yǎng)生館特許經(jīng)營授權(quán)合同
- 預(yù)防性試驗(yàn)四措一案及施工方案
- 第十八屆“地球小博士”全國地理知識科普競賽題庫(附答案)
- 第13課《 擴(kuò)音系統(tǒng)的控制》說課稿 2023-2024學(xué)年 浙教版六年級下冊信息科技
- 高校國有資產(chǎn)管理的三個維度與內(nèi)部控制
- 2025甘肅省事業(yè)單位聯(lián)考招聘(3141人)高頻重點(diǎn)提升(共500題)附帶答案詳解
- JJF 1176-2024(0~2 300) ℃鎢錸熱電偶校準(zhǔn)規(guī)范
- 8.4+同一直線上二力的合成課件+2024-2025學(xué)年人教版物理八年級下冊
- 2024年河北省邢臺市公開招聘警務(wù)輔助人員(輔警)筆試專項(xiàng)訓(xùn)練題試卷(2)含答案
- 家政公司服務(wù)員考試題庫單選題100道及答案解析
- 人工智能:AIGC基礎(chǔ)與應(yīng)用 課件 實(shí)訓(xùn)項(xiàng)目九 使用度加創(chuàng)作工具和剪映進(jìn)行智能化短視頻創(chuàng)作
- 《日影的朝向及長短》課件
評論
0/150
提交評論