版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省太湖縣中考數(shù)學(xué)考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣12.如圖,小橋用黑白棋子組成的一組圖案,第1個圖案由1個黑子組成,第2個圖案由1個黑子和6個白子組成,第3個圖案由13個黑子和6個白子組成,按照這樣的規(guī)律排列下去,則第8個圖案中共有(
)和黑子.A.37 B.42 C.73 D.1213.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>04.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內(nèi)角和與外角和相等”是不可能事件.5.函數(shù)y=1-xA.x>1 B.x<1 C.x≤1 D.x≥16.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.107.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個實數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-18.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.49.在實數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是()A.﹣3.5 B.2 C.0 D.﹣410.有五名射擊運動員,教練為了分析他們成績的波動程度,應(yīng)選擇下列統(tǒng)計量中的()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點P(2,3)在一次函數(shù)y=2x-m的圖象上,則m=_______.12.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.13.有一個正六面體,六個面上分別寫有1~6這6個整數(shù),投擲這個正六面體一次,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的概率是____.14.如圖,已知直線m∥n,∠1=100°,則∠2的度數(shù)為_____.15.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是16.二次函數(shù)的圖象與y軸的交點坐標是________.三、解答題(共8題,共72分)17.(8分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.18.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.19.(8分)如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉(zhuǎn),與AC邊交于點N.①根據(jù)條件補全圖形;②寫出DM與DN的數(shù)量關(guān)系并證明;③用等式表示線段BM、CN與BC之間的數(shù)量關(guān)系,(用含的銳角三角函數(shù)表示)并寫出解題思路.20.(8分)甲、乙兩人在5次打靶測試中命中的環(huán)數(shù)如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
8
8
0.4
乙
9
3.2
(2)教練根據(jù)這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).21.(8分)某市正在舉行文化藝術(shù)節(jié)活動,一商店抓住商機,決定購進甲,乙兩種藝術(shù)節(jié)紀念品.若購進甲種紀念品4件,乙種紀念品3件,需要550元,若購進甲種紀念品5件,乙種紀念品6件,需要800元.(1)求購進甲、乙兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共80件,其中甲種紀念品的數(shù)量不少于60件.考慮到資金周轉(zhuǎn),用于購買這80件紀念品的資金不能超過7100元,那么該商店共有幾種進貨方案7(3)若銷售每件甲種紀含晶可獲利潤20元,每件乙種紀念品可獲利潤30元.在(2)中的各種進貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?22.(10分)某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學(xué)校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?23.(12分)一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):銷售單價x(元/kg)
120
130
…
180
每天銷量y(kg)
100
95
…
70
設(shè)y與x的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?24.如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數(shù)式的求值;整體思想.2、C【解析】解:第1、2圖案中黑子有1個,第3、4圖案中黑子有1+2×6=13個,第5、6圖案中黑子有1+2×6+4×6=37個,第7、8圖案中黑子有1+2×6+4×6+6×6=73個.故選C.點睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.3、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.4、C【解析】【分析】根據(jù)相關(guān)的定義(調(diào)查方式,概率,可能事件,必然事件)進行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內(nèi)角和與外角和相等”是可能事件.如四邊形內(nèi)角和和外角和相等.故正確選項為:C【點睛】本題考核知識點:對(調(diào)查方式,概率,可能事件,必然事件)理解.解題關(guān)鍵:理解相關(guān)概念,合理運用舉反例法.5、C【解析】試題分析:根據(jù)二次根式的性質(zhì),被開方數(shù)大于或等于0,可以求出x的范圍.試題解析:根據(jù)題意得:1-x≥0,解得:x≤1.故選C.考點:函數(shù)自變量的取值范圍.6、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.7、A【解析】
根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.8、C【解析】
∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質(zhì).9、D【解析】
根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小進行比較即可【詳解】在實數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是﹣4,故選D.【點睛】掌握實數(shù)比較大小的法則10、A【解析】試題分析:方差是用來衡量一組數(shù)據(jù)波動大小的量,體現(xiàn)數(shù)據(jù)的穩(wěn)定性,集中程度;方差越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,數(shù)據(jù)越穩(wěn)定.故教練要分析射擊運動員成績的波動程度,只需要知道訓(xùn)練成績的方差即可.故選A.考點:1、計算器-平均數(shù),2、中位數(shù),3、眾數(shù),4、方差二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據(jù)待定系數(shù)法求得一次函數(shù)的解析式,解答即可.【詳解】解:∵一次函數(shù)y=2x-m的圖象經(jīng)過點P(2,3),∴3=4-m,解得m=1,故答案為:1.【點睛】此題主要考查了一次函數(shù)圖象上點的坐標特征,關(guān)鍵是根據(jù)待定系數(shù)法求得一次函數(shù)的解析式.12、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結(jié)果是x≥3,y=1.13、23【解析】∵投擲這個正六面體一次,向上的一面有6種情況,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的有2、3、4、6共4種情況,∴其概率是=.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、80°.【解析】
如圖,已知m∥n,根據(jù)平行線的性質(zhì)可得∠1=∠3,再由平角的定義即可求得∠2的度數(shù).【詳解】如圖,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案為80°.【點睛】本題考查了平行線的性質(zhì),熟練運用平行線的性質(zhì)是解決問題的關(guān)鍵.15、4【解析】
當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.16、【解析】
求出自變量x為1時的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點坐標.【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點坐標為,故答案為.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,在y軸上的點的橫坐標為1.三、解答題(共8題,共72分)17、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設(shè)⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設(shè)⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.18、(1)1213;(2)5π;(3)PB的值為10526或【解析】
(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結(jié)論;(3)當點Q落在直線AB上時,根據(jù)相似三角形的性質(zhì)可得對應(yīng)邊成比例,即可求出PB的值;當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應(yīng)邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當點Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設(shè)PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).19、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數(shù)量關(guān)系:【解析】
(1)先利用等腰三角形的性質(zhì)和三角形內(nèi)角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質(zhì)得到DA平分∠BAC,再根據(jù)角平分線性質(zhì)得到DE=DF,根據(jù)四邊形內(nèi)角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據(jù)正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案為:α;(2)①如圖:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于點E,DF⊥AC于點F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;③數(shù)量關(guān)系:BM+CN=BC?sinα.證明思路為:先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接著在Rt△BDE可得BE=BDsinα,從而有BM+CN=BC?sinα.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì).20、(1)填表見解析;(2)理由見解析;(3)變小.【解析】
(1)根據(jù)眾數(shù)、平均數(shù)和中位數(shù)的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大?。催@批數(shù)據(jù)偏離平均數(shù)的大?。┰跇颖救萘肯嗤那闆r下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定.(3)根據(jù)方差公式求解:如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。驹斀狻吭囶}分析:試題解析:解:(1)甲的眾數(shù)為8,乙的平均數(shù)=(5+9+7+10+9)=8,乙的中位數(shù)為9.故填表如下:平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
8
8
8
0.4
乙
8
9
9
3.2
(2)因為他們的平均數(shù)相等,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽;(3)如果乙再射擊1次,命中8環(huán),平均數(shù)不變,根據(jù)方差公式可得乙的射擊成績的方差變?。键c:1.方差;2.算術(shù)平均數(shù);3.中位數(shù);4.眾數(shù).21、(1)購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)有三種進貨方案.方案一:甲種紀念品60件,乙種紀念品20件;方案二:甲種紀念品61件,乙種紀念品19件;方案三:甲種紀念品1件,乙種紀念品18件.(3)若全部銷售完,方案一獲利最大,最大利潤是1800元.【解析】分析:(1)設(shè)購進甲種紀念品每件價格為x元,乙種紀念幣每件價格為y元,根據(jù)題意得出關(guān)于x和y的二元一次方程組,解方程組即可得出結(jié)論;(2)設(shè)購進甲種紀念品a件,根據(jù)題意列出關(guān)于x的一元一次不等式,解不等式得出a的取值范圍,即可得出結(jié)論;(3)找出總利潤關(guān)于購買甲種紀念品a件的函數(shù)關(guān)系式,由函數(shù)的增減性確定總利潤取最值時a的值,從而得出結(jié)論.詳解:(1)設(shè)購進甲種紀念品每件需x元,購進乙種紀念品每件需y元.由題意得:,解得:答:購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)設(shè)購進甲種紀念品a(a≥60)件,則購進乙種紀念品(80﹣a)件.由題意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三種進貨方案.方案一:甲種紀念品60件,乙種紀念品20件;方案二:甲種紀念品61件,乙種紀念品19件;方案三:甲種紀念品1件,乙種紀念品18件.(3)設(shè)利潤為W,則W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函數(shù),﹣10<0,W隨a的增大而減?。援攁最小時,W最大.此時W=﹣10×60+2400=1800答:若全部銷售完,方案一獲利最大,最大利潤是1800元.點睛:本題考查了二元一次方程組的應(yīng)用,一元一次不等式的應(yīng)用,一次函數(shù)的應(yīng)用,找到相應(yīng)的數(shù)量關(guān)系是解決問題的關(guān)鍵,注意第二問應(yīng)求整數(shù)解,要求學(xué)生能夠運用所學(xué)知識解決實際問題.22、(1)111,51;(2)11.【解析】
(1)設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)在獨立完成面積為411m2區(qū)域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設(shè)應(yīng)安排甲隊工作y天,根據(jù)這次的綠化總費用不超過8萬元,列出不等式,求解即可.【詳解】解:(1)設(shè)乙工程隊每天能完成綠化的面積是x(m2),根據(jù)題意得:解得:x=51,經(jīng)檢驗x=51是原方程的解,則甲工程隊每天能完成綠化的面積是51×2=111(m2),答:甲、乙兩工程隊每天能完成綠化的面積分別是111m2、51m2;(2)設(shè)應(yīng)安排甲隊工作y天,根據(jù)題意得:1.4y+×1.25≤8,解得:y≥11,答:至少應(yīng)安排甲隊工作11天.23、(1)y=﹣0.5x+160,120≤x≤180;(2)當銷售單價為180元時,銷售利潤最大,最大利潤是7000元.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 游戲客服工作計劃
- 2025初三班主任班級工作計劃
- 4年度信息工作計劃
- 小學(xué)年度工作計劃范文2025年
- 幼兒園老師工作計劃報告例文
- 制定銷售計劃書范文
- 電力工程設(shè)計組織計劃
- 上證聯(lián)合研究計劃課題
- “新家庭計劃-家庭發(fā)展能力建設(shè)”工作方案
- 《歐盟與歐元》課件
- 2025屆江蘇省期無錫市天一實驗學(xué)校數(shù)學(xué)七年級第一學(xué)期期末達標檢測試題含解析
- 城市軌道交通運營管理【共30張課件】
- 鋼結(jié)構(gòu)設(shè)計智慧樹知到期末考試答案章節(jié)答案2024年山東建筑大學(xué)
- DB5334 T 12.5-2024《地理標志證明商標 香格里拉藏香豬》的第5部分疾病防治
- 化學(xué)機械漿與半化學(xué)機械漿
- 睡眠中心宣傳方案
- 2024春期國開電大??啤督ㄖ茍D基礎(chǔ)》在線形考(形考性考核作業(yè)一至四)試題及答案
- 論《國際貨物銷售合同公約》的適用問題
- 大型養(yǎng)路機械國內(nèi)發(fā)展
- 校服供貨服務(wù)方案
- 水利監(jiān)理工程師培訓(xùn)
評論
0/150
提交評論